Alzheimer’s Disease and Periodontal Disease: Mechanisms Underlying A Potential Bi-directional Relationship

Maintaining Oral Health in the Aging Population: The Importance of the Periodontal-Systemic Connection in the Elderly (3 CEUs)

The Promise of Transdisciplinary Nurse-Dental Hygienist Collaboration in Achieving Health-Related Quality of Life for Elderly Nursing Home Residents
Sodium Fluoride

Prevents caries

Triclosan

1. Reduces plaque bacteria, gingivitis, and halitosis1,2,7
2. Reduces key inflammatory mediators3,8,9

Copolymer

Retains triclosan for 12-hour protection6

Clinically Proven in 47 Studies

Studied in more than 10,000 patients5

Fluoride

Prevents caries

Available in whitening and 3 great-tasting flavors

#1 recommended by dentists, hygienists, pharmacists, and periodontists10*

For Better Oral and Overall Health

Visit colgateprofessional.com for free patient samples.

*The ADA Council on Scientific Affairs’ Acceptance of Colgate Total® is based on its finding that the product is effective in helping to prevent and reduce tooth decay, gingivitis and plaque above the gum line and bad breath, when used as directed.
Table of Contents

VOLUME 1, NUMBER 3 — SEPTEMBER 2006

- **Raising the Bar**
 Grand Rounds Inspires the Future
 Lyle Hoyt

- **Letter from the Editors**
 Casey Hein
 Charles M. Cobb

- **Guest Editorial**
 Grand Rounds with Dr. Edmund H. Duthie Jr.
 Edmund H. Duthie Jr.

- **Original Article**
 Alzheimer’s Disease and Periodontal Disease: Mechanisms Underlying a Potential Bi-directional Relationship
 Pamela S. Stein
 Stephen Scheff
 Dolph R. Dawson III

- **Original Article**
 Maintaining Oral Health in the Aging Population: The Importance of the Periodontal-Systemic Connection in the Elderly
 Anthony M. Iacopino

- **Continuing Education Test**

- **Original Article**
 The Promise of Transdisciplinary Nurse-Dental Hygienist Collaboration in Achieving Health-Related Quality of Life for Elderly Nursing Home Residents
 Patricia Coleman
 Casey Hein
 JoAnn R. Gurenlian

- **Tools for Implementation**

Statement of Editorial Purpose: The editorial purpose of *Grand Rounds in Oral-Systemic Medicine™* is to raise awareness of the importance of the relationship between oral and systemic health, and advance the understanding of oral-systemic science and its appropriate integration into the clinical practice of mainstream dentistry and medicine by providing editorial that:

- Compels members of the dental and medical communities to embrace the growing body of science called oral-systemic medicine and accept the uncertainty of its ongoing evolution.
- Translates/transfers credible and relevant scientific findings and scholarly thought related to oral-systemic medicine into authoritative editorial that is educational and engages all sectors of the health-care professions (i.e., physicians and nurses, dentists and hygienists and allied health-care providers).
- Stimulates collaboration and innovative thinking on how to transcend professional boundaries to integrate clinical protocols that include application of oral-systemic medicine in everyday patient care.

Policy on Submission of Manuscripts: The opportunity to contribute to the editorial mission of *Grand Rounds in Oral-Systemic Medicine™* is offered to author candidates by honorary invitation. As such, unsolicited manuscripts are generally not accepted. Manuscripts published in *Grand Rounds in Oral-Systemic Medicine™* are written by authors who are invited to contribute to this body of knowledge based upon their academic, research or clinical expertise, from both dentistry and medicine, in specific subject matters that pertain to oral-systemic medicine.
2006 Advisory Board

Salomon Amar, DDS, PhD
Boston University

Caren Barnes, RDH, MS
University of Nebraska Medical Center

Don Callan, DDS
Private Practice, Little Rock, AR

Christina DeBiase, BSDH, MA, EdD
West Virginia University

Tim Donley, DDS, MSD
Private Practice, Bowling Green, KY

James Ferguson, II, MD
University of Kentucky

William Giannobile, DDS, MS, DMedSc
University of Michigan

Joan Gluch, RDH, PhD
University of Pennsylvania

Lorne Golub, DMD, MSc, MD (honorary)
State University of NY at Stony Brook

Marilyn Goulding, RDH, BSc, MOS
Niagara College of Canada

Martin Greenfield, MD
Private Practice, Great Neck, NY

Robert Greenwald, MD
Long Island Jewish Medical Center, NY

Sara Grossi, DDS, MS
East Carolina University

J. Michael Gruenwald, MD
University of Arkansas for Medical Sciences

JoAnn Gurenlian, RDH, PhD
Private Consulting, Haddonfield, NJ

Georgia Johnson, DDS, MS
University of Iowa

Lauren Kilmeade, RDH
Private Practice, Great Neck, NY

Barbara Kunselman, RDH, MS
University of Cincinnati

Evanthia Lalla, DDS, MS
Columbia University

Samuel Low, DDS, MS, MEd
University of Florida

Simon MacNeill, BDS, DDS
University of Missouri-Kansas City

Diane McClure, RDH, MS
St. John’s Hospital, Springfield, MO

Lenora McClean, RN, EdD
State University of NY at Stony Brook

Brian Mealey, DDS, MS
University of Texas at San Antonio

Sushma Nachnani, PhD
Clinical Research, Culver City, CA

John Novak, BDS, LDS, MS, PhD
University of Kentucky

David Paquette, DMD, MPH, DMSc
University of North Carolina at Chapel Hill

William Reeves, DDS
Private Practice, Oklahoma City, OK

Jonathan Richter, DDS
Private Practice, Great Neck, NY

C. Austin Risbeck, RDH
Private Practice, San Francisco, CA

Louis Rose, DDS, MD
Private Practice, Philadelphia, PA

Maria Ryan, DDS, PhD
State University of NY at Stony Brook

Frank Scannapieco, DMD, PhD
State University of NY at Buffalo

James Scuibba, DMD, PhD
Johns Hopkins University

Stanley Shanies, MD, FACP
Private Practice, New Hyde Park, NY

Jon Suzuki, DDS, PhD, MBA
Temple University

Cheryl Thomas, RDH
Private Consulting, Galveston, Texas

Clay Walker, PhD
University of Florida

Karen Williams, RDH, MS, PhD
University of Missouri-Kansas City
Oral health may be influenced by plaque control, nutrition, fluoride exposure, hormonal changes, medical conditions, medications and/or medical treatments. Oral bacteria (plaque) produce acids that may destroy tooth enamel after long periods of time. Frequency of a highly acidic oral environment increases the risk for dental disease. In many cases, dental disease can be prevented.

Prevention starts as early as primary tooth development. Oral health care should be promoted throughout pregnancy, infancy, childhood, teen and adult life. Special attention to oral care should be enforced when certain medical conditions may influence the oral environment. Increased awareness of potentially unhealthy oral conditions may help prevent oral infection, or promote early detection, thereby motivating improvement and management.

Monitoring oral pH will allow patients to evaluate an acidic environment, and change their oral care routines to increase oral pH to a healthier level, thereby reducing the risk of dental disease.

Beutlich® pH Paper

15 ft. roll of pH paper, dispenser and color chart to test saliva pH in the range of 4.5-7.5

- Identify an acidic oral environment
- Increase awareness through regular monitoring
- Improve oral care to prevent continuous exposure to acid production
- Reduce risk of dental caries or periodontal disease
- For in-vitro use only

Ask your Beutlich representative for more information or contact us at (800) 238-8542
M-Th: 7:30 a.m. – 5:00 p.m., F: 7:30 a.m. – 4:00 p.m. CT. www.beutlich.com.
What lurks beneath your beautiful work?

ARESTIN® is indicated as an adjunct to scaling and root planing (SRP) procedures for reduction of pocket depth in patients with adult periodontitis. ARESTIN® may be used as part of a periodontal program which includes good oral hygiene, and scaling and root planing.

ARESTIN® contains minocycline, a tetracycline derivative, and therefore should not be used in children and in pregnant or nursing women. The use of drugs of the tetracycline class during tooth development may cause permanent discoloration of the teeth.

The most common treatment-emergent adverse events were headache (9.0%), infection (7.6%), flu syndrome (5.0%), and pain (4.3%). These occurred at a similar rate to SRP and SRP + placebo.

Please see full Prescribing Information on last page.
Dental work should not rest on an infected foundation. Treat periodontal infection with ARESTIN® + SRP.

Periodontal disease is the most common chronic bacterial infection in adults and the #1 cause of tooth loss in the United States. Persisting pathogens can multiply and spread throughout the periodontium—infesting the foundation of your dental work.

Scaling and root planing (SRP) alone can leave harmful bacteria behind in the gums. A clinical study showed that SRP had little to no effect in 32% of patients.

ARESTIN® (minocycline hydrochloride) Microspheres, 1 mg is a locally administered antibiotic proven to enhance the efficacy of SRP. Clinical studies show that adjunctive treatment with ARESTIN®:

- Significantly reduces pocket depth versus SRP alone
- Provides a sustained release of minocycline in the periodontal pocket
- Is more effective than SRP alone in molar teeth, in patients >50, and in smokers

Whether your next procedure is cosmetic, restorative, or hygiene—check the foundation for periodontal infection before you build a beautiful smile.

FOR MORE INFORMATION ABOUT ARESTIN®, PLEASE VISIT WWW.ARESTIN.COM/GR
Clinical Pharmacology

Minocycline, a member of the tetracycline class of antibiotics, has a broad spectrum of activity. It is bacteriostatic and active against a wide range of organisms, including gram-negative and -positive bacteria. Minocycline is effective against a variety of infections, such as infections of the skin, soft tissues, and respiratory system. It is also effective against infections caused by Mycoplasma pneumoniae, Chlamydia pneumoniae, and legionnaires' disease.

Pharmacokinetics

In a pharmacokinetic study, 15 patients (18 to 25 years) were given oral minocycline (200 mg) twice daily for 5 days. The median peak plasma concentration was 4.2 mg/L at 2 hours, and the median elimination half-life was 72 hours. The mean area under the curve (AUC) was 150 mg-h/L. The bioavailability of minocycline was 80% to 90%.

Clinical Studies

In a randomized, double-blind, placebo-controlled, parallel-group study of 155 patients, 140 patients were randomized to receive oral minocycline (200 mg) twice daily for 5 days. The primary endpoint was the change in acne severity at the end of treatment. The treatment groups were comparable in terms of demographics and baseline characteristics.

Table 1: Efficacy of Minocycline

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean (SD)</th>
<th>Median (IQR)</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>5.85 (3.0)</td>
<td>5.83 (3.0)</td>
<td>3.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Minocycline</td>
<td>5.85 (3.0)</td>
<td>5.85 (3.0)</td>
<td>3.0</td>
<td>10.0</td>
</tr>
</tbody>
</table>

The primary endpoint was the change in acne severity at the end of treatment. The treatment groups were comparable in terms of demographics and baseline characteristics.

Adverse Effects

The most commonly reported adverse effects were mild to moderate gastrointestinal symptoms, such as nausea, vomiting, and abdominal pain. Other adverse effects reported were headache, dizziness, and pruritus. The incidence of adverse effects was similar between the placebo and minocycline groups.

Conclusions

Minocycline is an effective oral antibiotic treatment for acne vulgaris. It is well tolerated and has a favorable safety profile. It is recommended for the treatment of moderate to severe acne vulgaris in adults.

References

Raising the Bar

Grand Rounds Inspires the Future

By Lyle Hoyt †

On July 25th, Casey Hein, Chief Editor of Grand Rounds in Oral-Systemic Medicine™, testified before the United States Department of Health and Human Services (DHHS) Advisory Board for Interdisciplinary Community-Based Linkages regarding the connection between oral health and systemic health. This advisory board is comprised of professionals representing medicine, dentistry, nursing, dental hygiene, and other allied health disciplines. Expert testimony is used to provide recommendations to the DHHS Secretary and Congress related to appropriations, guidelines, and best practices for federally supported interdisciplinary community-based education/training programs involving all health and allied health professions. Hein’s presentation highlighted the important data supporting the suspected relationship between periodontal disease and systemic diseases, the need for all health professions to embrace transdisciplinary models for prevention/comprehensive patient management, and the role of Grand Rounds in Oral-Systemic Medicine™ in providing information to practitioners bridging the gap between the latest information and clinical care. Hein was assisted in her presentation by Dr. Joanne Gurenlian, who discussed a new interdisciplinary nursing/hygienist model for preventive dental care in nursing home settings that has been described for the first time by Coleman, Hein and Gurenlian in this issue of Grand Rounds. Additionally, Hein was able to secure the participation of Tom Meyers, of America’s Health Insurance Plans, to deliver a follow-up presentation which discussed how some insurance companies have begun to change their approach to reimbursement for preventive dental care. These new reimbursement considerations are based on recent data indicating that periodontal treatment and maintenance may reduce overall healthcare expenditures associated with chronic inflammatory diseases such as diabetes and cardiovascular/cerebrovascular disease. New models for preventive dental coverage also extend to high-risk groups that include pregnancy. The DHHS advisory board was impressed with the presentations and is currently considering recommendations that may lead to federal support of interdisciplinary education/training programs that address the periodontal-systemic connection and demonstration projects that provide innovative models for comprehensive preventive care or data regarding healthcare economics impact.

The significance of this event for the dental profession cannot be overemphasized. The potential availability of federal funds to support development of education/training programs and pilot projects is certainly a desirable outcome. More importantly however, the invitation for Hein to testify before this advisory board provides necessary exposure to validate the periodontal-systemic connection. The federal government and the insurance industry are now beginning to recognize the importance of the periodontal-systemic connection. The acceptance of Grand Rounds in Oral-Systemic Medicine™ by other health and allied health professionals provides important visibility for the role of the dental profession in overall health and quality of life. The dental profession must be ready and able to respond to the almost certain demand for increased collaboration that will characterize future community-based transdisciplinary/comprehensive care models.

† Senior Vice President and Group Publisher, PennWell Corporation
What explains such neglect in providing oral health care in elderly populations? Have healthcare providers been conditioned to believe that suffering and premature death from chronic diseases is just an inevitability of the aging process? Or, perhaps we have become paralyzed by the overwhelming task of meeting the oral health needs of elderly persons. Whatever the reason, someplace along the way, it seems the healthcare delivery system gave up on elderly people. In truth, timely delivery of adequate oral care to the elderly population never really existed. Indeed, the vulnerability of elderly persons to oral conditions that are undiagnosed and/or untreated and the impact of those oral conditions on co-existing, multifactorial chronic diseases present an ethical quandary that can no longer be considered a subtle dilemma.

The impact of tooth loss on an elderly person’s overall physical and emotional health has been reported extensively throughout geriatric literature. What has not been well discussed is the elderly population’s increased susceptibility to infection of oral origin. Discussion of the influence of gram-negative periodontal pathogens and the resultant systemic inflammation in exacerbating an existing chronic disease such as diabetes or increasing risk for aspiration pneumonia in an elderly person has not been a priority, at least until now.

This issue of Grand Rounds brings to the forefront the consequences and grim nature of the lack of oral care for elderly persons. However, raising awareness is only the beginning of change. In proposing a possible solution to this ethical quandary, a geriatric specialist nurse practitioner (Coleman) joins two dental hygienists (Gurenlian and Hein) in exposing the barriers to oral health in nursing homes and exploring a transdisciplinary model of care that relies on collaboration between nurses and dental hygienists. To bolster this proposal, Iacopino’s cut-to-the-chase article draws into question the ability and willingness of dental professionals to participate in geriatric care. His presentation of several case studies provides excellent examples of the importance of maintaining oral health in the aging population and progressive care plans that inevitably have a positive effect on quality of life. Most exciting is the contribution of Stein, Scheff, and Dawson. This original manuscript unravels the suspected link between periodontal disease and Alzheimer’s disease by suggesting several biologically plausible mechanisms to explain a potential association. We are tremendously honored by these coauthors’ willingness to debut this developing body of knowledge in Grand Rounds.

And finally, we feel very privileged that Edmund Duthie, M.D. accepted our invitation to author the guest editorial for this issue. Duthie is perhaps one of the most highly respected geriatric physicians in the world, and his editorial discussing the importance of dental professionals’ participation in the care of the elderly population provides a very compelling call to action.

Delivering adequate oral health care for elderly persons is already a challenge, let alone facing the demographics of the future. By 2030, almost 1 out of 5 Americans — approximately 72 million people — will be 65 years of age or older. This urgently demands a change in delivery systems. Instead of running away from the truth about the void in oral health care for elderly people, the time has arrived to intercede by developing novel, effective, and efficient models of care. And, most importantly, the first step in creating sustainable solutions is the recognition that this reality and its inherent responsibilities belong to us all.

Sincerely yours,

Casey Hein, BSDH, MBA
Chief Editor, caseyh@pennwell.com

Charles Cobb, DDS, MS, PhD
Editor-at-Large, cobbc@umkc.edu
75% of adults will develop some form of gum disease at some time in their life.¹

So why is she smiling?

She knows that the Sunstar Butler 3-Step® System puts her on her way to healthy gums and a healthy mouth.

Research indicates that heart disease, diabetes and strokes are potentially linked to severe gum disease. So it may be more important than ever to provide the proper tools to maintain optimal oral care for your patients. It has been our passion for more than 80 years.

Call 1-800-528-8537 to get the name of the Sunstar Butler representative in your area. Visit www.SunstarButler.com for more product information and to sign up for our quarterly newsletter.

1. ADA News Release, American Dental Association, September, 2001

More new and innovative ways to help your practice and your patients.
In this issue of *Grand Rounds in Oral-Systemic Medicine™*, the editors have wisely chosen to highlight aging. It is an honor to be invited to opine on the subject of interdisciplinary care for the readers.

Geriatric medicine is a relative newcomer to the medical scene. Although the concept of caring for aged persons is as old as the medical profession itself, the idea of selecting elderly persons for specialized thought and care is relatively recent. Nascher¹ is frequently credited with originating the term “geriatrics”. Simply stated, geriatrics is the practice of medicine as it relates to older persons. This is distinct from gerontology, which is the study of aging. In the US, geriatricians have been certified by the American Boards of Internal Medicine and Family Medicine since 1988. The only other American Board of Medical Specialties that certifies geriatric practitioners is the American Board of Psychiatry and Neurology. Currently, there are fewer than 7,000 geriatricians in the US.

Inherent in this discipline are the patients cared for by geriatricians. Although geriatrics applies to all older persons, geriatricians typically find themselves caring for vulnerable elders. The term “vulnerable elder” has been widely disseminated in a body of work from the Rand Corporation with support from Pfizer² titled *Assessing care of vulnerable elders: ACOVE project overview*. Vulnerable elders are those aged 65 or over, who are at high risk for developing death or disability in the near future. A simple, reliable, and valid scoring system has been developed to identify vulnerable elders. Age 85 and over by itself results in the classification as vulnerable. The ACOVE authors found that in a nationally representative cohort, 33% of elderly people meet criteria for vulnerability. Using the same criteria, another group of investigators in a minority geriatric practice in Chicago reported over 60% of patients could be considered vulnerable.

These data suggest that the application of interdisciplinary practice must be appropriately targeted within geriatric populations; otherwise, the benefits of this approach can be diluted or lost within a population. Dental practice in geriatric populations should be high quality and evidence-based. I would term this as dentistry in the elderly population. Geriatric dentistry, however, might be viewed differently. I suspect gerodentists often provide care within an organized system of care for vulnerable elders. This system incorporates an interdisciplinary team that cares for vulnerable elders, particularly those elders we term as frail: losing weight, underweight, slowed, weak, and easily exhausted with a poor exercise tolerance.

Interdisciplinary care is the health care rendered in an organized framework by a variety of disciplines.³ Typically, these disciplines could include chaplaincy, dentistry, dietetics, medicine, mental health, nursing, social work, occupational therapy, pharmacy, physical therapy, and recreational therapy. The organized framework must include patient-centered care with regular, frequent communication among disciplines and a commitment to a shared philosophy about the care. Interdisciplinary care has prospered in some areas and floundered in others. Traditional office-based ambulatory practice is a challenge because there is no readily available system to incorporate this approach.
Needle-free, Patient Friendly Anesthesia for Scaling & Root Planing

Don’t Get Stuck Without It!

Oraqix provides pain relief and its needle-free application avoids patient concern(s) regarding needles and injections.

- Oraqix should not be used in those patients with congenital or idiopathic methemoglobinemia.
- Novel formulation allows Oraqix to change from a liquid to a gel at body temperature.
- Oraqix is contraindicated in patients with hypersensitivity to amide type local anesthetics or any other product component.
- The most common adverse reactions in clinical studies were application site reactions, headaches and taste perversion.

Please see the accompanying brief summary of the prescribing information.

To order or for more information on Oraqix, contact OraPharma at 1.866.273.7846 or visit our website at www.oraqix.com
Oraqix® is contraindicated in patients with hypersensitivity to amide type local anesthetics or to any other product component.

WARNINGS

Prilocaine can cause elevated methemoglobin levels particularly in conjuction with methemoglobin-inducing agents. Methemoglobinemia has been reported in a few cases in association with lidocaine treatment. Patients with glucose-6-phosphate dehydrogenase deficiency or congenital or idiopathic methemoglobinemia are more susceptible to drug-induced methemoglobinemia. Oraqix® should not be used in those patients with congenital or idiopathic methemoglobinemia and in infants under the age of twelve months who are receiving treatment with methemoglobin-inducing agents. Signs and symptoms of methemoglobinemia may be delayed some hours after exposure. Initial signs and symptoms of methemoglobinemia are characterized by a slate grey cyanosis seen in, e.g., buccal mucous membranes, lips and nail beds. In severe cases symptoms may include central cyanosis, headache, lethargy, dizziness, fatigue, syncope, dyspnea, CNS depression, seizures, dysrhythmia and shock. Methemoglobinemia should be considered if central cyanosis unresponsive to oxygen therapy occurs, especially if metHb-inducing agents have been used. Calculated oxygen saturation and pulse oximetry are inaccurate in the setting of methemoglobinemia. The diagnosis can be confirmed by an elevated methemoglobin level measured with co-oximetry. Normally, metHb levels are <1%, and cyanosis may not be evident until a level of at least 10% is present. The development of methemoglobinemia is generally dose related. The individual maximum level of metHb in blood ranged from 0.8% to 1.7% following administration of the maximum dose of 8.5 g Oraqix®.

Management of Methemoglobinemia: Clinically significant symptoms of methemoglobinemia should be treated with a standard clinical regimen such as a slow intravenous injection of methylene blue at a dosage of 1-2 mg/kg given over a five minute period.

Patients taking drugs associated with drug-induced methemoglobinemia such as sulfonamides, acetaminophen, acetanilide, aniline dyes, benzocaine, chloroquine, dapsone, naphthalene, nitrates and nitrites, nitrofurantoin, nitroglcerin, nitroprusside, pamaquine, para-aminosalicylic acid, phenacetin, phenobarbital, phenothiazine, and quinine are also at greater risk for developing methemoglobinemia.

Treatment with Oraqix® should be avoided in patients with any of the above conditions or with a previous history of problems in connection with prilocaine treatment.

PRECAUTIONS

General:

DO NOT INJECT

Oraqix® should not be used with standard dental syringes. Only use this product with the Oraqix™ Dispenser, available from DENTSPLY Pharmaceutical.

Allergic and anaphylactic reactions associated with lidocaine or prilocaine can occur. These reactions may be characterized by urticaria, angioedema, bronchospasm, and shock.

Eye contact with Oraqix® should be avoided. Animal studies have demonstrated severe eye irritation. Corneal irritation and potential abrasion may occur if eye contact occurs, immediately rinse the eye with water or saline and protect it until normal sensation returns. In addition, the patient should be evaluated by an ophthalmologist.

Oraqix® should be used with caution in patients with a history of drug sensitivities, especially if the etiologic agent is uncertain.

Patients with severe hepatic disease, because of their inability to metabolize local anesthetics normally, are at greater risk of developing toxic plasma concentrations of lidocaine and prilocaine.

Information for Patients: Patients are cautioned to avoid injury to the treated area, or exposure to extreme hot or cold temperatures, until complete sensation has returned.

Drug Interactions: Oraqix® should be used with caution in combination with dental injection anesthetics, other local anesthetics, or agents structurally related to local anesthetics, e.g., Class 1 antiarythmics such as tocainide and mexiletine, as the toxic effects of these drugs are likely to be additive and potentially synergistic.

CARCINOGENESIS, MUTAGENESIS, IMPAIRMENT OF FERTILITY:

Carcinogenesis - Chronic oral toxicity studies of o-toluidine, a metabolite of prilocaine, have shown that this compound is a carcinogen in both mice and rats. The tumors associated with o-toluidine included hepatocarcinomas/adenomas in female mice, multiple occurrences of hemangiosarcomas/hemangiomias in both sexes of mice, sarcomas of multiple organs, transitional-cell carcinomas/papillomas of urinary bladder in both sexes of rats, subcutaneous fibromas/fibrosarcomas and mesotheliomas in male rats, and mammary gland fibroadenomas/ adenomas in female rats. These findings were observed at the lowest tested dose of 150 mg/kg/day or greater over two years (estimated daily exposures in mice and rats were approximately 6 and 12 times, respectively, the estimated exposure to o-toluidine at the maximum recommended human dose of 8.5g of Oraqix® gel on a mg/m2 basis).

o-Toluidine, a metabolite of prilocaine, was positive in Escherichia coli DNA repair and phage-induction assays. Urine concentrates from rats treated orally with 300 mg/kg o-toluidine were mutagenic to Salmonella typhimurium in the presence of metabolic activation.

USE IN PREGNANCY:

Teratogenic Effects: Pregnancy Category B

Treatment of rabbits with 15 mg/kg (180 mg/m²) produced evidence of maternal toxicity and evidence of delayed fetal development, including a non-significant decrease in fetal weight (7%) and an increase in minor skeletal anomalies (skull and sternebral defects, reduced ossification of the phalanges). The effects of lidocaine and prilocaine on post-natal development was examined in rats treated for 8 months with 10 or 30 mg/kg, s.c. lidocaine or prilocaine (60 mg/m² and 180 mg/m²) on a body surface area basis, respectively up to 1.4-fold the maximum recommended exposure for a single procedure). This time period encompassed 3 mating periods. Both doses of either drug significantly reduced the average number of pups per litter surviving until weaning of offspring from the first 2 mating periods. There are, however, no adequate and well-controlled studies in pregnant women. Because animal reproduction studies are not always predictive of human response, Oraqix® should be used during pregnancy only if the benefits outweigh the risks.

Nursing Mothers: Lidocaine and, possibly, prilocaine are excreted in breast milk. Caution should be exercised when Oraqix® is administered to nursing women.

Pediatric Use: Safety and effectiveness in pediatric patients have not been established. Very young children are more susceptible to methemoglobinemia. There have been reports of clinically significant methemoglobinemia in infants and children following excessive applications of lidocaine 2.5% and prilocaine 2.5% topical cream (See WARNINGS).

Geriatric Use: In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.

ADVERSE REACTIONS

In clinical studies, the most common adverse reactions are application site reaction (including pain, soreness, irritation, numbness, ulcerations, vesicles, edema, abscess and/or redness), headache and taste perversion.

Rx only:

For more detailed information, consult your DENTSPLY Pharmaceutical representative and read the full Prescribing Information.

Manufactured by Recip AB for DENTSPLY Pharmaceutical, York, PA 17404
A well known and celebrated example of geriatric interdisciplinary care is the Program of All-inclusive Care for the Elderly (PACE). This national program takes frail, community-dwelling elderly persons who meet nursing home admission criteria and supports them in the home using a day center as the hub for the provision of care. The system is prospectively capitated and is based on the tenets of interdisciplinary care. Other examples where systems are in place for interdisciplinary care to be delivered to targeted groups in an organized fashion include Acute Care for the Elderly (ACE) hospital units, Geriatric Evaluation and Management (GEM) inpatient and outpatient programs, nursing homes, home-care agencies, and hospices. In these contexts, care for vulnerable or frail elderly persons becomes easier, satisfying, and actually fun, as opposed to care for the same populations where the system is not in place for communication and synergy among disciplines.

The challenge remains to design, implement, and disseminate models of interdisciplinary care, as well as to demonstrate efficacy. Oral health is not always included in the care of frail, elderly patients or outcome analyses. Health professional education has not emphasized this care, and dental education is among this group. These oversights must be addressed. Interdisciplinary teams provide wonderful opportunities for innovation in practice and education. Research is needed to investigate outcomes and to guide best practices for our patients.

During my 25-plus-year career in geriatrics, I have learned an enormous amount from my dental colleagues, who have participated in teams where I have trained and practiced. I appreciate the value of dentistry to interdisciplinary care. Leadership is needed within the dental profession to ensure that frail, vulnerable elders benefit from the best dentistry has to offer. There are enormous challenges, and bright, energetic, and committed dentists are needed to meet the challenges and be part of the interdisciplinary care process.

Dentists: Your input is essential and welcome, and the opportunities appear limitless. Please join a geriatric interdisciplinary team, develop a team, study the outcomes from a team, or precept students in the context of a team. You, your colleagues in other geriatric disciplines, your students, and your patients will benefit.

References
ALZHEIMER’S DISEASE AND PERIODONTAL DISEASE: MECHANISMS UNDERLYING A POTENTIAL BI-DIRECTIONAL RELATIONSHIP

Abstract
Numerous studies support a link between oral and systemic disease. Recent data also suggest that periodontal disease is a significant risk factor for Alzheimer’s disease. This paper provides an overview of Alzheimer’s disease, discusses the etiology and epidemiology of periodontal disease, and outlines several plausible mechanisms accounting for a potential association between oral disease and neurodegeneration. These mechanisms include: 1) metastatic spread of gram-negative bacteria from the oral cavity to the brain via a transient bacteremia; 2) injury to brain tissue from systemic inflammatory mediators produced in response to periodontal pathogens; 3) cerebrovascular injury to brain; 4) genetic predisposition, particularly polymorphisms within the interleukin-1 gene family; and 5) malnutrition, weight loss, and wasting associated with periodontal disease. Understanding the role of oral disease in dementia is important: Given that there is currently no effective treatment for Alzheimer’s disease, oral disease is a potential risk factor that could be prevented.

(A complimentary copy of this article may be downloaded at www.thesystemiclink.com.)

Key Words: Periodontal disease, Alzheimer’s disease, neurodegeneration, inflammation, dementia

Introduction
All countries are experiencing an increase in the number of people over the age of 65. In the US, changing demographics suggest a much higher number of elderly in the population. Periodontal disease and Alzheimer’s Disease (AD) are chronic conditions that commonly affect the elderly. Numerous cross sectional studies address the oral health status of individuals with AD and dementia. Overall, evidence indicates that Alzheimer’s patients exhibit poor oral health, including increased plaque, bleeding, and calculus than age- and gender-matched controls. While it is true that Alzheimer’s patients may be unable to adequately perform oral hygiene measures, thereby facilitating the development of periodontal disease, a potential exists for a bi-directional relationship. Researchers are now investigating the role of poor oral health and periodontal disease in development of AD. In this paper we provide an overview of AD, review the epidemiology of periodontal disease, and outline biologically plausible mechanisms underlying the relationship between periodontal disease and AD.

Alzheimer’s Disease: An Overview
Alzheimer’s disease is the leading cause of dementia in the US elderly population. Other dementias include vascular dementia, dementia accompanied by Lewy bodies, frontotemporal dementia, Creutzfeldt-Jakob disease, and Parkinson’s disease. AD is a progressive dementia characterized by early short-term memory impairment. The incidence of AD within the aging population is significant and disturbing: currently, an estimated 4.5 million Americans have AD, and it is estimated that 14 million will be afflicted by 2050. Approximately 1% of the population between 65 and 69 years of age has been diagnosed with AD, and the incidence increases loga-
Smarter Probing.

- “talking” probe involves patient in high-tech experience
- built-in educational movies and handouts for patients
- user-friendly software, superior charting/printouts
- automated probe (no reading, no guessing)
- automatically trends data to track clinical endpoints
- generate $10,000/month in new hygiene revenue

Call For Your Free Info Packet or Online Demo
1-877-357-7623
www.floridaprobe.com
A clinical diagnosis of AD is based upon cognitive assessment tools, including the Mini Mental State Examination (MMSE)20 and the Clinical Dementia Rating scale (CDR).21,22 While the primary symptoms of AD are learning impairment and delayed recall, multiple aspects of cognitive deterioration often occur in the course of decline. These include inability to concentrate, confusion, decline in verbal skills, spatial disorientation, depression and other personality changes, limb rigidity and incontinence. As the disease progresses, every cognitive function becomes impaired and an individual scores zero on all tests.23 A cognitively normal elderly individual can have a MMSE score of 26-30 while an individual with mild AD usually has a score < 23. The expected decline in individuals with AD is about 3 points per year. A CDR score of 1.0 or higher is an indication of AD.

The major pathological hallmarks of AD, first described by Alois Alzheimer in 1907,34 are the presence of neurofibrillary tangles (NFT), neuropil threads (NT), and beta-amyloid plaques, often referred to as senile plaques (SP). While the presence or absence of these pathological structures does not necessarily indicate that an individual is inflicted with AD, a final diagnosis must include observation of some of these hallmarks. The abundance of NFT in the cerebral cortex is positively correlated with disease progression.25,26 Although the severity of dementia also correlates with the cortical density and distribution of both NFT and SP, several studies have observed these lesions in cognitively intact elderly individuals,27-31 suggesting they occur in the course of normal aging as well. More recent reports observe significant loss of synapses in the hippocampus and neocortex32,33 coupled with significant neuronal loss.34,35 It is still controversial whether neuronal loss plays the most significant role in AD and whether or not the loss of larger neurons is more important than the site at which they are lost.

Currently there are no effective therapies for AD although numerous laboratories are working on preventive strategies. One of the problems associated with developing an effective therapy is that the etiologies of the disease are unknown. The greatest risk factor for AD is increasing age and a family history of the disease. But why these are significant risk factors and what happens to engage the neuropathological cascade of AD are unknown. Increasing evidence supports the involvement of oxidative stress, in which free radical levels exceed antioxidant defenses, as a major cause of AD.38,39 Progressive oxidative modification of proteins is a normal consequence of aging and appears to underlie accumulation of amyloid-ß protein (Aß).40,42 The amyloid hypothesis of AD states that the formation of Aß initially triggers AD.43 Amyloid peptides are also potent activators of microglial cells in the brain.44,45 Numerous studies have shown an inflammatory response associated with the presence of neuritic amyloid plaques involving microglia and astrocytes. Coupled with this activation is an upregulation of inflammatory cytokines and chemokines, which could potentially damage synapses and neurons leading to further microglial activation and astrogliosis.46 While it is currently being actively debated whether inflammatory mechanisms cause CNS damage in AD, an inflammatory response certainly coincides with the neuropathology of the disease. Epidemiological studies provide intriguing evidence in support of use of non-steroidal anti-inflammatory drugs (NSAIDs) for several chronic inflammatory diseases, including AD.46-50 NSAIDs, such as aspirin, ibuprofen, naproxen, COX-2 inhibitors, and other medications, may lower the risk of AD.

Epidemiology of Periodontitis and Systemic Disease Association

The prevalence of a disease is defined as the proportion of cases in a specific population at a given point. The prevalence of severe, generalized periodontitis ranges from 5-15%.51 Estimates are higher for mild periodontitis (21.8%) in the US.52 Estimating periodontal disease trends is challenging and not without controversy. Borrell and colleagues have reported decreases in periodontitis prevalence from NHANES III to NHANES 1999-2000.53 Others estimate that the number of adults over age 25 with some form of periodontitis will increase through 2010.54

Periodontal infections are the direct result of an interaction between a tooth-associated microbial biofilm and host defenses. A mature biofilm is comprised of large numbers of gram-negative anaerobes that stimulate a host response.55 Neutrophils and other cells are recruited resulting from a host response and produce a variety of inflammatory mediators, including cytokines and prostaglandins.56 The chronicity of the local lesion is important, as it is the continued generation of inflammatory mediators and subsequent interactions derived from the host response that leads to destruction of alveolar bone and connective tissue.57,58 Research efforts have focused on this chronic inflammatory process and have defined mechanisms enabling specific bacterial cell invasion and the role of pathogens in the local destruction of oral tissues.59 The impact of this process extends beyond the oral cavity, as is illustrated by examples of periodontal-
Porphyromonas gingivalis. Investigators find a direct effect of oral bacteria such as P. gingivalis and Streptococcus sanguis on induction of platelet activation and aggregation, which may contribute to atheroma formation and thrombosis. In their review they describe human studies identifying oral periodontopathogens in atherosclerotic plaque, along with animal studies implicating P. gingivalis in activating the acute-phase response. It is believed that acute-phase activation promotes lipemia and formation of atheromas. Mechanistic models for P. gingivalis-accelerated atherosclerosis, including microbial invasion, immunological sounding, pathogen trafficking and autoimmunity, have been proposed by Gibson and colleagues. Genco and colleagues also reported several case-control and cross-sectional studies evaluating coronary heart disease and poor oral health. One study evaluated NHANES III data and found that the odds of having a heart attack increased with the severity of periodontitis, while another supported the association of specific periodontal pathogens and myocardial infarction. Most longitudinal studies reporting such an association found that the level or burden of periodontal disease was important.

Investigations of linkages of preterm birth and diabetes to periodontal disease have increased because of the enormous economical and social burden caused by these health problems. Offenbacher and colleagues report that mothers with significant periodontal disease had a 7.5 fold increase in the risk of having a preterm, low birth weight baby. A recent study by Pitiphat and colleagues report 65% higher levels of C-reactive protein (CRP) among pregnant women with periodontitis compared with periodontally healthy women. Clinical intervention trials are being conducted to investigate if non-surgical periodontal intervention therapy reduces the incidence of preterm birth and low birth weight babies. In addition, there appears to be a bi-directional relationship between periodontal disease and diabetes, with improved metabolic control seen in poorly controlled diabetics following periodontal therapy.

P. gingivalis has also been linked pathogenetically to rheumatoid arthritis (RA) through the enzyme peptidyl-larginine deiminase (PAD). Rosenstein and colleagues hypothesize that individuals predisposed to periodontal disease exhibit autoimmune responses, such as production of rheumatoid factor. PAD enzyme breaks down fibrin in the periodontal pocket and parallels intra-articular breakdown of fibrin and other proteins. The authors note that several RA treatments, such as treatment with nonsteroidal anti-inflammatory drugs, ameliorate periodontal disease. Golub and colleagues propose a “two-hit” model of chronic destructive periodontitis. They cite several animal and human studies supporting their model that a subgingival biofilm (the first hit) is followed by a disease (the second hit, such as rheumatoid arthritis), which in turn increases levels of circulating inflammatory biomarkers. The second hit also results in increased alveolar bone loss. Therefore, defining mechanisms mediating systemic induction of periodontal disease may provide improved treatment strategies for chronic local and systemic diseases.

When evaluating epidemiological studies of periodontal disease it is important to consider differences in the definition of case severity, populations sampled, sites selected and sampling procedures used in a particular study. Dietrich and Garcia note that randomized control trials are needed to assess periodontal treatment efficacy in reducing CVD and stroke, but that such an approach may not be sufficient to determine the etiology of periodontal disease in these conditions. Therefore they stress the need for further well-designed observational studies to facilitate understanding of disease relationships.

Plausible Links Between Periodontal Disease and AD

It is clear that periodontal disease is associated with numerous systemic diseases, although it is too soon to tell if we can add AD to the list. Investigators are currently asking whether poor oral health promotes development of AD and dementia. Thus we outline below plausible biological mechanisms linking periodontitis and AD.

Metastatic Spread of Gram-negative Bacteria from the Oral Cavity to the Brain via Transient Bacteremia or Neuronal Pathways

For years it has been known that oral bacteria can disseminate to distant sites within the body. Elderly and immunocompromised patients, such as those suffering from cancer, diabetes, or rheumatoid arthritis, may be especially vulnerable to systemic oral pathogens. Any dental procedure that causes bleeding can produce transient bacteremia. It is well documented that certain dental procedures, such as extractions, periodontal surgery, periodontal scaling and root planing, induce hematogenous seeding. The American Heart Association provides guidelines to prevent infections of the joints, cardiac valves, and endocardium caused by oral bacteria. Could oral pathogens also infect the brain with subsequent neuropathological consequences? Additionally, could the bacteremia responsible for this neuropathology be the result of chronic periodontal disease?
In individuals with good oral hygiene the number of oral pathogenic bacteria reaching the systemic circulation is small. However, this number increases twofold to tenfold in persons with periodontal disease. High levels of pathogenic bacteria, coupled with the edematous state of the infected periodontal pocket, leads to ongoing, chronic dissemination of periodontal bacteria into the bloodstream. One study demonstrated positive cultures of oral bacteria in arterial blood in 55% of patients with severe periodontal disease.

As early as 1891, it was suggested that oral bacteria could “lodge in some weak point in the brain” and result in brain infection and abscess. Indeed, there are numerous reports of brain infection testing positive for oral bacteria, with most cases specifically linked to periodontal pathogens. Brain infection by one such bacteria, Actinobacillus actinomycetemcomitans, is associated with coagulative necrosis of cortical cells and white matter.

The flora of periodontal disease consists largely of gram-negative bacteria. Current research has identified brain receptors specific for gram-negative bacteria. Brain infections by gram-negative bacteria have been linked to Alzheimer’s etiology, specifically late-onset sporadic AD. A recent histologic study demonstrated the presence of gram-negative Chlamydia pneumonia in cells of affected brain regions in 17 of 19 post mortem Alzheimer’s brains, while brains of controls were not infected. In another post mortem study, oral Treponema was found in the cortex of 14 of 16 Alzheimer’s brains compared with only 4 of 18 control brains. Treponema was detected in cells of the trigeminal ganglion, suggesting that bacteria may reach the brain through branches of the trigeminal nerve.

Overall these studies indicate that it is biologically feasible for pathogenic oral bacteria to disseminate through the bloodstream, reach the brain and either initiate or exacerbate existing lesions.

Injury to Brain Tissue from Systemic Inflammatory Mediators Produced in Response to Periodontal Pathogens

It is also possible that pathogenic periodontal bacteria do not “infect” the brain but rather induce a systemic inflammatory response leading to injury of brain tissue. Since host responses to periodontal disease, such as upregulation of proinflammatory mediators, show significant positive correlation with coronary artery disease and premature birth, neuropathological responses may also be induced.

Inflammation is a recurrent theme among investigations of oral and systemic diseases. The cascade of inflammatory events associated with periodontal disease begins with endotoxin, a high molecular weight lipopolysaccharide found in the cell wall of gram-negative periodontal bacteria. Endotoxin initiates inflammation locally in the periodontal pocket by stimulating inflammatory cells such as monocytes, macrophages, fibroblasts and T cells to produce cytokines and prostaglandins (PGE2). Some of the most important inflammatory cytokines associated with periodontal disease are interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-8 (IL-8), and tissue necrotizing factor-alpha (TNF-α). IL-1 and TNF-α signal hepatic cells to produce several Type 1 acute phase proteins, among them CRP.

Studies have shown increased levels of proinflammatory cytokines in inflamed gingival tissues compared with healthy tissue and in the gingival crevicular fluid in patients with active periodontal disease. Elevated levels of acute phase proteins, including CRP, have also been demonstrated in the gingival crevicular fluid. It is suggested that inflammatory mediators produced locally may “spill over” into the systemic circulation, producing increased serum levels of cytokines and acute phase reactants. In addition, daily bacteremias, or chronic “trickling” of pathogenic periodontal bacteria into the circulation, could initiate a systemic cascade of inflammatory events resulting in a sustained elevation of inflammatory products.

Indeed investigators have found markers of systemic inflammation when analyzing the serum of individuals with periodontal infections. A study by Ebersole and colleagues showed that levels of endotoxin detectable in the blood increase with the level of oral disease. Periodontal pathogens have been shown to elicit a circulating antibody response. Abnormally elevated serum levels of PGE2 and CRP have been found in people with periodontitis. In one study of an elderly population, Bretz and colleagues found significantly higher levels of IL-6 in the blood of those with extensive periodontal disease compared with controls. This finding is noteworthy because IL-6 is associated with local production of amyloid proteins, and in the Alzheimer’s brain it may regulate production of amyloid proteins found in neuritic plaques, which are shown in Figure 1.

Cytokines have been implicated in the pathophysiology of several psychiatric disorders, including AD, because of their ability to stimulate neurochemical, neuroendocrine, and neuroimmune changes in the brain. As noted, inflammatory mediators can damage synapses and neurons and activate microglia and the inflammatory cascade.
Welcome to the Community!

Be a part of the RDH eVillage by subscribing at www.omeda.com/rdh

Be a part of building the community by sending your articles to kristinehrdh@pennwell.com
Stein, Scheff, and Dawson. Alzheimer’s disease and periodontal disease ...

IL-1 is particularly relevant to the pathogenesis of AD since it is overexpressed in neuritic plaques. In addition, IL-1 increases synthesis of beta-amyloid precursor protein and activates astrocytes.

Given the evidence for the role of chronic inflammation in AD, it is reasonable to suggest that long-term systemic exposure to periodontal pathogens and their subsequent chronic production of inflammatory mediators may precipitate neuropathological changes.

Periodontal Disease Increases the Risk of Cerebrovascular Injury to Brain

Stroke, or cerebrovascular accident, affects the blood supply to the brain. There are two types of stroke: hemorrhagic, in which an artery supplying oxygen-rich blood to the brain ruptures, and ischemic, when a blood vessel supplying the brain is blocked by a local thrombus or an aggregation of bacteria and fibrin from a distant source. Although stroke is not considered a major risk factor for AD, stroke has been related to the severity of clinical symptoms in Alzheimer’s patients, and individuals with a history of stroke demonstrate more rapid decline in memory performance than do healthy individuals. Stroke is a significant risk factor for dementia. In fact, the risk of dementia increases ninefold in subjects experiencing ischemic stroke. The relationship between stroke and periodontal disease thus merits discussion.

Recent findings suggest that periodontal disease is an important risk factor for stroke. Beck and colleagues examined 9,415 dentate and 1,491 edentulous adults and found stroke associated with both edentulism and clinical attachment loss of 3 millimeters or greater. Findings from similar studies by Grau and colleagues indicate that subjects with severe periodontal disease, as defined by clinical attachment loss of 6 mm or greater, had from 4.3 to 7.4 times greater risk of cerebral ischemia than control subjects or subjects with mild periodontal disease. In an investigation of plaque index scores and oral hygiene practices of 401 US veterans, it was shown to have a significant association with stroke. Examining subjects under the age of 50, Syrjänen and colleagues found a greater risk of ischemic cerebrovascular disease in males with severe dental infections combined with other bacterial infections. In a case control study, patients with acute cerebrovascular ischemia were found to have more severe periodontal disease when compared with age and sex-matched nonstroke patient controls. In addition, men who have 24 or fewer teeth have been shown to have a greater risk of stroke.

What mechanism underlies the association between periodontal disease and stroke? Li suggests that in individuals with periodontal disease bacteria and cytokines disseminating into the systemic circulation contribute to stroke by altering platelet function and promoting atherosclerosis and blood coagulation, a hypothesis supported in the literature. Proinflammatory mediators (IL-1, TNF-α, PGE2, and IL-6) produced in response to the bacterial challenge of periodontal disease induce the release of platelet activating factor (PAF). Platelet aggregation-associated protein expressed on the periodontal pathogen *P. gingivalis* has been found to induce platelet aggregation, potentially increasing the chance of acute thromboembolic events. In addition, *P. gingivalis* can activate endothelial cells. Individuals with periodontitis have been found to have significantly higher levels of serum fibrinogen. As noted, periodontal pathogens have been found in human artheromas. Haraszthy and colleagues found that 44% of human artheromas removed during carotid endarterectomies tested positive for at least one of the following periodontal pathogens: *A. actinomyctecomitans, Bacteroides forsythus, P. gingivalis, or Prevotella intermedia*. In a similar study by Zambon and colleagues, periodontal pathogens were found in over half of the artheromas examined.

Data from recent studies thus indicates that periodontal disease affects platelets and blood coagulation, influences thrombus formation, and activates endothelial cells, all of which contribute to the onset of stroke and could potentially result in the types of neuropathology associated with cognitive impairment.

Fig. 1

Bielschowsky stained neuritic plaque from an individual with AD. Specimen provided by Dr. Stephen Scheff, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY.
Genetics: Polymorphisms in the Interleukin 1 Gene Family

Inflammation is a lifesaving defense mechanism against bacterial and viral pathogens. However, if unchecked, it can become chronic and play a role in numerous pathologic processes, including periodontal disease and AD. Genetic factors may predispose one to a high risk phenotype favoring chronic inflammation because of a hyper-responsive immune system.

Investigations of the genetics of both AD and periodontal disease show polymorphisms (variations) in the interleukin 1 gene family associated with the disease. Human chromosome 2 (2q13) contains 3 IL-1 genes in a cluster. Two encode the proteins IL-1A and IL-1B, which produce the proinflammatory mediators IL-1α and IL-1β, respectively. The third gene encodes a protein that binds IL-1 receptor sites functioning as a receptor antagonist.

Periodontal research suggests that specific polymorphisms in the IL-1 gene cluster constitute a risk factor for chronic periodontitis. The risk appears to increase when a particular polymorphism is combined with smoking. Studies show a significant association between the severity of adult periodontitis and specific IL-1 polymorphisms. Individuals with this “periodontitis-associated genotype” exhibit significantly elevated levels of IL-1B in gingival crevicular fluid that remain high even after treatment. In a related study by Poicut, an IL-1 polymorphism related to periodontal disease was found to correlate with a twofold to fourfold increase in IL-1B production. These studies offer explanations for individual differences in susceptibility to and variations in clinical expression of periodontitis demonstrated in previous studies.

Genetic studies in AD have also identified risk alleles in the coding regions of IL-1α (IL-1α-889) and IL-1B (IL-1B-511) genes. These genotypes are associated with overexpression of IL-1 in brain tissue, plaque formation, overgrowth of dystrophic neuritis, and elevated neuronal acetylcholinesterase. Yucsoy and colleagues found a significant association between genetic variations in the IL-1 gene family and AD and suggested that such variations increased the risk for AD. Other investigators studying Italian and American subjects demonstrated the IL-1α-889 allele may be a risk factor for sporadic AD. Bosco and colleagues also showed that individuals with particular variations in the IL-1 gene cluster were at increased risk of developing AD (odds ratio 4.8). The results of a meta analysis of all studies investigating potential association of IL-1 genes and AD showed a strong association in persons with early onset AD. A related study by Grimaldi found a significant association between specific polymorphisms in the cluster, primarily in the gene encoding IL-1A, and AD onset before 65 years of age. Nicol found that of 232 confirmed Alzheimer’s cases, 12.9% possessed the IL-1A 2,2 genotype, while only 6.6% of the controls showed this variation. A similar study demonstrated an IL-1A polymorphism known as allele 2 in 46% of individuals clinically diagnosed with AD compared with 34% in the control population.

Genetic studies of both AD and periodontal disease therefore indicate a common theme of variants in the IL-1 gene family. Individuals with particular polymorphisms produce significantly elevated IL-1, which could promote increased inflammatory responses and a predisposition to diseases related to chronic inflammation. Further investigation of genetic factors underlying both AD and periodontal disease should provide insights into the pathogenesis of both processes.

Weight Loss and Wasting Associated with Periodontal Disease May Contribute to Cognitive Decline

Periodontal disease contributes to general wasting of body tissues in two ways. First, it often results in tooth loss, which often leads to problems with chewing, swallowing and food selection. Individuals also poorly absorb nutrients from food when it is not well masticated. Evidence from several studies indicates a deterioration in nutritional status in individuals missing teeth.

Current research suggests a connection between tooth loss and AD. In a recent twin study examining several potentially modifiable risk factors for dementia, tooth loss before the age of 35 was shown to be strongly associated with AD. Data from a study by Kondo and colleagues also suggest tooth loss is an AD risk factor. A six year prospective cohort study found subjects with fewer teeth at baseline showed a greater probability of developing mental impairment.

To interpret these findings, it must be acknowledged that tooth loss could mark prior inflammation and that chronic exposure to inflammatory products may mediate an increased AD risk. However, in an animal study of the effect of extracted molar teeth, defects in cholinergic neurotransmission and impaired spatial memory were observed. These observations suggest that something more than inflammation plays a role in this outcome, and a logical choice would be impaired chewing and the nutritional deficiencies that follow.

Periodontal disease also contributes to weight loss and wasting through the effects of bacterial products and proinflammatory mediators. Lipopolysaccharide found in the cell wall of gram-negative periodontal pathogens has...
been shown to induce metabolic wasting. Inflammatory cytokines associated with periodontal disease including IL-1 and TNF-α are implicated in weight loss and wasting in the elderly. TNF-α regulates cachectin, a cytokine responsible for inducing cachexia, a syndrome which includes anorexia, weight loss and protein wasting. IL-1 has also been shown to induce significant anorexia. In addition, IL-1 and TNF-α contribute to sarcopenia, or loss of muscle mass in the elderly, and individuals with higher serum levels of TNF-α exhibit lower body cell mass and less appendicular skeletal muscle mass. These findings are significant because declining body mass index is associated with cognitive decline and increased risk of AD.

In summary, both tooth loss and inflammation related to periodontal disease may accelerate unintentional weight loss and muscle wasting, which in turn may accelerate neurodegeneration.

Conclusion

Recently much research has examined potential associations between oral and systemic diseases, but few studies have investigated a potential link between oral disease and AD or dementia. AD is a significant health problem that will likely become even greater as the population ages. It is established that AD contributes to deterioration in oral health. Some studies suggest that oral disease contributes to AD or cognitive impairment. However, data supporting a bi-directional association is limited, and it is currently unclear which occurs first, oral disease or AD. It is possible that the lines are blurred and that each disease contributes to the pathogenesis of the other.

Several biologically plausible mechanisms are proposed for a potential association between the two diseases and summarized in Figure 2. It should be noted, however, that because the etiology of AD is complex and multi-factorial, it is unlikely that any one mechanism is purely causal but instead may “tip the balance” in favor of dementia in an individual otherwise at risk.

It is important that research continue to investigate more fully what role oral disease plays in the pathogenesis of AD. Though costly and time consuming, large prospective randomized clinical studies and interventional studies are needed to clarify the interrelationship of these two diseases and should encourage design of more effective intervention strategies. Although some risk factors are immutable for AD (family history and age), oral disease is one that can be prevented.

Whether poor oral health contributes to or is the product of dementia, the clinical implications are similar. Early preventive care must be established and a program put into place to maintain oral health. For individuals with...
AD, as cognitive and physical abilities decline, oral hygiene measures will likely suffer and dental visits become less frequent. This lack of care may result in a vicious cycle producing increased inflammation, exacerbating both periodontal disease and AD, and resulting in further decline of oral health measures.

We cannot tolerate that poor oral health is often accepted as a normal part of aging. There is adequate data to indicate that untreated oral disease leads to significant morbidity, mortality, and avoidable healthcare costs. It is critical that relationships between elderly patients and their caregivers be established with dentists, dental hygienists, physicians, nursing staff and other care providers. When everyone participating in the health care of a patient is convinced of the importance of maintaining oral health, more positive overall health outcomes will be achieved. Furthermore, those in charge of distribution of healthcare resources must be educated about the role oral disease plays in systemic diseases, in the hope that they will realize that the increased expense of oral health care is far less than the cost of ignoring it.

References
Stein, Scheff, and Dawson. Alzheimer's disease and periodontal disease ...

For additional references to this article, please consult the digital version of Grand Rounds in Oral-Systemic Medicine at www.thesystemiclink.com.

100. Balin BJ, Appelt DM. Role of infection in Alzheimer's disease and periodontal disease...
Stein, Scheff, and Dawson. Alzheimer’s disease and periodontal disease ...

Introduction

The number of elderly Americans surpassed 35 million in 2000, and by 2030 twenty percent of Americans will be 65 or older.\(^1\) Rapid growth of this population will dramatically impact dentistry, since in this era, increased numbers of older adults retain their teeth.\(^2,3\) Additionally, ethnic/cultural minorities account for a larger percentage of the elderly population, and individuals aged 85 and older are the fastest growing segment of the elderly population.\(^1\) Thus, the diversity and number of frail/functionally-dependent elderly persons requiring care in nontraditional or institutionalized settings is increasing. The landmark 2000 report on oral health by the US Surgeon General documented profound disparities in the oral health status of older Americans.\(^4\) Over 25% of people aged 65-74 have severe periodontal disease, and at any given time 5% of Americans aged 65 and older (currently approximately 1.7 million people) live in a long-term care facility where dental care is inadequate. In 2003, Oral Health America released its national grading report emphasizing that the oral health of older Americans is in a "state of decay".\(^5\) Every state received failing or near failing grades in all categories of dental services for older adults, especially preventive and periodontal care.\(^6,7\)

Adequate numbers of properly trained dental professionals are needed to ensure quality oral health care for older adults. These professionals must play a greater collaborative role with healthcare management teams as the community practice environment moves to a transdisciplinary care model.\(^2\) For the dental profession to participate in this dynamic practice environment, practitioners must be prepared to address specific geriatric issues related to access, patient management approaches that include comprehensive transdisciplinary care. This approach is particularly relevant to elderly patients susceptible to systemic diseases or development of co-morbid conditions if periodontal health is neglected. Future comprehensive care models must include dental, medical, and other health professionals aware of the periodontal-systemic connection to manage periodontitis and systemic disease. Dental professionals should stress the importance of regular periodontal maintenance to patients and other health professionals. Preventive periodontal management will pay huge dividends as the population ages with regard to reducing potential systemic complications, especially those associated with chronic inflammation.
Iacopino. Maintaining oral health in the aging population ...

risk assessment, prevention, cultural diversity, confounding medical conditions, and psychosocial influences, in addition to primary dental care. Access is particularly important as low-income, minority, and institutionalized/homebound elderly are at high risk for oral disease but are the least likely to receive services. A recent study by the Centers for Disease Control (CDC) reported that only 15% of these elderly had satisfactory oral health.

The current state of geriatric dental expertise in the US is woefully inadequate. Clinicians competent in geriatric issues are not being trained in numbers sufficient enough to meet projected workforce needs. A recent report by the Institute of Medicine (IOM) criticized the lack of geriatric dental expertise, stating that “linkages between dentistry and medicine are insufficient to prepare practitioners for patients with complex medical problems.” Additionally, it noted that “the traditional isolation of dentistry from the rest of the healthcare team has been detrimental to the profession.” Transdisciplinary practice is a vital component of geriatric dental expertise because it exposes dental professionals to contributions of other health disciplines and fosters communication. Other healthcare professionals must also develop appreciation for the abilities of dental personnel to manage oral health needs of the elderly. Such a transdisciplinary team management approach improves the prognosis of the elderly. In fact, studies demonstrate that elderly individuals whose comprehensive management includes dental care develop fewer co-morbid conditions and require less expenditure of healthcare dollars.

The transdisciplinary concept has long been supported by the Health Resource Services Administration – Bureau of Health Professions (HRSA-BHPr), as noted in their white papers for health professions education. Yet, inclusion of other health care disciplines in geriatric dental practice or oral health education for non-dental health professions is inadequate and lacks uniformity. Dental professionals must be able to provide education and training for other healthcare practitioners and caregivers regarding 1) the relationship of oral health to general health, 2) the importance of daily oral care, 3) the means to provide basic oral care, and 4) the referral to a dental professional when necessary.

Achieving an optimal level of transdisciplinary practice required for the elderly requires cooperation of like-minded healthcare professionals in community-based study clubs emphasizing transdisciplinary approaches. Involving dental professionals with these groups would provide comprehensive exposure to attitudes and skills required to provide dental care to older adults. As patients become disabled or experience cognitive dysfunction, dental teams will also need to address ethical issues relevant to dental diagnosis, treatment planning, and how care is provided. In geriatric treatment planning, the focus should be on identifying an optimal level of care for the patient (ranging from none to very extensive). In other words, optimal care should not by definition be highest level technically possible. Rather, it should be to establish a level of care appropriate to maintain oral and general health. Other issues that should be considered within this framework are alternative treatment procedures or techniques, expanding the oral care team to include other health professionals or paraprofessionals, and the potential interactions of oral disease with systemic conditions in the elderly.

The field of geriatric practice will evolve as research is applied to patient care. Thus, dental professionals will need lifelong education in using health technology/informatics resources to update their skills. Currently dental professionals need to be better acquainted with diagnosis/management of complex transdisciplinary cases and function more like oral physicians. The shift toward prevention-oriented models must continue so that the traditional “repair” approach to dental care is transformed to one of early diagnosis and prevention. For the elderly population, professionals must familiarize themselves with evidence-based decision making and understand transdisciplinary management of complex cases in addition to acquiring expertise in restorative procedures and fabrication of dental appliances. The most accessible and comprehensive transdisciplinary Web-based resource providing guidelines relevant to oral health in the elderly is currently available through the Wisconsin Geriatric Education Center and Marquette University School of Dentistry.

Importance of the Periodontal-Systemic Connection in the Elderly

Recently the concept of a periodontal-systemic connection linking periodontal disease to systemic effects has emerged. The implications of this connection, however, for the aging population have not been considered in depth. In terms of public health impact, there is no doubt that poor oral health negatively impacts general health, particularly in the elderly. Most chronic inflammatory diseases and conditions, including periodontal disease, are cumulative and thus manifested later in life. Decades of oral neglect contribute to additional health problems in the elderly population, which already consumes the majority of healthcare dollars nationwide, an outcome that places a significant burden on the healthcare system. Given that periodontal disease has already been linked to development or exacerbation of systemic disease, maintaining optimal periodontal health in midlife may do more to reduce healthcare expenditures in one’s remaining lifespan than any other public health measure. Thus,
Centers For Dental Medicine

The Key To Your New Profit Center

Higher Treatment Profits
Modern Tx protocols and Lifetime Oral Health Systems™ yield long-term practice income. Plus…each new patient referral presents with “doctors orders” requesting treatment, and also has a mouthful of other dental problems to treat.

Capture New Physician Referrals
The new standards of care require that physicians refer their at risk patients for a periodontal risk analysis. Why not start now to capture this new source of new patients. How would even 10 physician referrals a month change your practice?

Position Your Practice
As the Center for Dental Medicine™ in your area, you will have a complete turnkey perio treatment program and marketing system to establish you as the leader.

More Effective Treatment
Centers for Dental Medicine™ is a nationwide network sharing best practices of periodontal treatment. Members report 95% effectiveness in eliminating periodontal pockets and bleeding with less than 2% relapse.

FREE REPORTS
www.Key2profit.info

How to Market to and GET REFERRALS from Physicians!

“Introduction to Physician Referrals”

"Dental In-Office Diabetes and Heart Disease Risk Testing”

Capture the Physician Referral Market in your Area!

Fax this coupon to, or call 866-546-5444 to speak to a practice consultant regarding how you can profit from the Oral-Systemic Connection Movement.

Please send me information on:

FREE Online Seminars:
☐ Intro to CDM
☐ Physician Referrals
☐ Lifetime Oral Health

Live Seminars:
☐ Oct.14, Philadelphia, PA
☐ Oct. 27, Phoenix, AZ
☐ Get Everything!

FREE Reports:
☐ Intro to Physician Referrals
☐ Cardio/Diabetes testing in your office

Fax or call 866-546-5444 NOW!
Iacopino. Maintaining oral health in the aging population...

optimal oral health cannot be reserved only for those who can afford basic care, but it must be a national priority to improve the overall health of all citizens.22

Physiological/Biochemical Linkage of Periodontal and Systemic Diseases

Many chronic inflammatory conditions share some common physiological and biochemical elements with periodontal disease (periodontitis).23 Periodontitis is more than a localized oral infection. Recent data indicate that periodontitis may initiate changes in systemic physiology and biochemistry that alter immune function, serum cytokine/lipid levels, and tissue homeostasis.23-25

Periodontal Disease, Diabetes, and Insulin Resistance

The interrelationship of periodontitis and diabetes is the most obvious example of a systemic disease predisposing one to oral infection, and once that infection is established, it may in turn exacerbate the disease.25-27 However, in this case, an oral infection might also predispose otherwise healthy patients to systemic disease.23-25 Common cellular/molecular mechanisms underlie the reciprocity of diabetes and periodontitis and likely synergize when the conditions coexist. The proposed mechanistic link involves the broad axis of inflammation and includes activities of immune cells (polymorphonuclear leukocytes, monocytes, macrophages), serum lipid levels (low density lipoprotein cholesterol and triglycerides (LDL/TRG)), and tissue homeostasis.28-30

As a result of metabolic and enzymatic deficiencies, diabetic patients are prone to elevated serum LDL/TRG, even when blood glucose levels are controlled.31-34 Elevated lipid levels alter immune cell function, producing an inflammatory immune cell phenotype (upregulation of pro-inflammatory cytokines from monocytes/polymorphonuclear leukocytes and downregulation of growth factors secreted from macrophages).25-30 This occurrence predisposes an individual to chronic inflammation and progressive tissue breakdown and diminishes tissue repair capacity. Periodontal tissues are frequently affected because they are constantly wounded by substances emanating from bacterial biofilms. Thus much clinical and epidemiological evidence supports the idea that individuals with diabetes (both type I and type II) show higher incidence of severe or rapidly progressing forms of periodontitis than non-diabetics.39-45

Periodontitis-induced bacteremia/endotoxemia also elevates levels of serum pro-inflammatory cytokines such as interleukin-1 beta (IL-1B) and tumor necrosis factor-alpha (TNF-α).46-48 The activities of both cytokines alters lipid metabolism and leads to hyperlipidemia similar to that observed in diabetes. Additionally, these factors can produce an insulin resistance syndrome similar to that observed in pre-diabetes and may initiate destruction of pancreatic β-cells, leading to diabetes. Elevated IL-1β levels play a role in the development of type I diabetes through destruction of pancreatic β-cells.59-62 TNF-α has also been implicated as a causative factor in insulin resistance and type II diabetes, as elevated TNF-α levels alter intracellular signaling stimulated by insulin, reduce synthesis of the insulin-responsive glucose transporter, and mediate macrophage-dependent cytotoxicity in pancreatic islets.53-57 Infection-induced insulin resistance syndromes, if long-standing or chronic, are precursors of active diabetes because of the pancreatic β-cell destruction resulting from sustained elevation in IL-1β/TNF-α.51,53,57 In fact, a pro-inflammatory imbalance created by excess IL-1β/TNF-α may be one of the most critical determinants of β-cell loss in diabetes.59 Thus, periodontitis may potentially exacerbate conditions associated with diabetes.

Recent clinical studies provide strong support for such a hypothesis, particularly with regard to insulin resistance.59 The degree of insulin resistance has been shown to be directly related to the severity of periodontitis60, and some investigators have demonstrated a relationship between pre-diabetes and periodontitis in non-diabetic patients.61 Such reciprocity is further illustrated by recent studies demonstrating the effect of either periodontal disease or successful treatment of such disease on diabetes-induced hyperglycemia.62-64 Periodontal treatment actually improved glycemic status, especially in type II diabetes, where controlled trials have shown improvement of glycemic control after periodontal therapy.65 In another study, effective treatment of periodontal infection and reduction of periodontal inflammation were associated with lower levels of glycated hemoglobin.66 Thus, chronic untreated periodontitis may induce diabetes.

Periodontal Disease and Atherosclerosis-induced Diseases

Investigators have hypothesized that periodontitis-induced elevations of IL-1β and TNF-α and subsequent elevation of serum LDL/TRG levels trigger development of other systemic conditions that disproportionately affect the elderly, particularly cardiovascular disease (CVD), cerebrovascular disease (CBVD), rheumatoid arthritis (RA), and dementia.23,24,67,71 In fact, recent studies suggest that in advanced periodontitis, serum levels of IL-1B, TNF-α, and other inflammatory mediators/biomarkers are sufficiently elevated to be considered a significant systemic health risk, even in the absence of overt clinical symptoms of disease.62,72,73 Even at low levels, these cytokines can initiate significant systemic responses, including inflammatory tissue and organ damage. Interestingly, chronic periodontitis is one of the strongest and most reliable elevators of serum pro-inflammatory cytokine/lipid levels, and treatment of peri-
I Have Dry Mouth.

Give the Proven Treatment for serious dry mouth!

ONLY Biotène® Dry Mouth products contain the patented blend of antibacterial enzymes and proteins naturally found in healthy saliva. Together, these ingredients restore and strengthen the bodies own natural defense against cavities and gum disease.

DON'T take chances with your patients health. Biotène® products have over 20 years of proven results. Biotène® continues to make advances in new therapeutic dry mouth treatments that do more than just relieve the symptoms!

Boost Saliva's Natural Defense System!

For Free Patient Samples call (800) 922-5856 or visit www.biotene.com

*Data on file and available upon request
odontitis has been shown to significantly reduce serum levels of these factors.23-27,48,67,74,75

The impact of periodontal disease on CVD and CBVD is closely tied to mechanisms underlying initiation and progression of atherosclerosis. This effect involves a combination of a systemic inflammatory state and dysregulation of lipid metabolism plus direct interaction of periodontal pathogens with vascular walls. Increasing evidence confirms that periodontitis facilitates atheroma formation.67 The contribution of systemic inflammation and elevated serum LDL/TRG to atherosclerosis has been thoroughly described.76 Periodontitis-induced elevation of serum pro-inflammatory cytokines, inflammatory biomarkers, and serum LDL/TRG has also been well documented.23-27,67,72-74,77-81 Other studies demonstrate that periodontal pathogens interact with vascular endothelial cells (either directly or through inflammatory responses to antibodies directed against periodontal pathogens) and colonize developing atheromas, contributing to thickening of arterial walls and atheroma formation.57,82-89 Thus, there is likely more than a casual relationship between periodontitis and pathogenic mechanisms underlying atherosclerosis. In the presence of systemic periodontal pathogens and antibody-mediated reactions to those pathogens, periodontitis-induced elevated serum LDL/TRG and pro-inflammatory cytokines may damage vascular endothelial cells, leading to recruitment of macrophages or foam cell formation and development of atheromatous plaques.

Periodontal Disease and Rheumatoid Arthritis

Periodontitis and RA share common pathogenic mechanisms and immunological/pathological outcomes. Patients with severe periodontitis or RA exhibit similar blood cytokine profiles distinct from disease-free individuals.88 Recent evidence suggests a strong correlation between the extent and severity of periodontal disease and RA. Individuals with advanced RA will likely experience more significant periodontal problems than normal individuals and vice-versa.69 Thus these conditions could be closely related through the systemic inflammatory state previously described, as accumulating evidence supports the notion that elevated pro-inflammatory cytokines and reduced tissue repair capacity are manifested in both conditions.90 Additionally, some periodontal pathogens expressing the enzyme peptidylarginine deaminase (PAD) may generate antigens capable of stimulating production of rheumatoid factor-containing immune complexes and initiating inflammation in the synovium.90 Of the pathologies previously described, evidence for this relationship is preliminary. Nonetheless, the immediate clinical lesson is that the periodontal status of patients with RA should be carefully monitored.

Periodontal Disease and Neurodegenerative Diseases

The inflammatory hypothesis of neurodegenerative diseases such as Alzheimer’s and Parkinson’s (the most common neurodegenerative disorders leading to dementia in the elderly) has moved from medical speculation to mainstream thinking.70,71 Brain mononuclear phagocytes, particularly microglia (brain resident macrophages), protect the nervous system by acting as debris scavengers, killers of microbial pathogens, and regulators of immune responses. Microglia are activated by numerous environmental stimuli including pro-inflammatory cytokines and bacterial lipopolysaccharides, initiating a cascade of neuroinflammatory events.70 Systemic inflammation is associated with signals transferred from blood to brain via perivascular macrophages and microglia.91 Resultant neuroinflammatory responses include secretion of neurotoxic factors mediating neuronal cell injury and death. Over time a slow, smoldering inflammation in the brain may destroy sufficient neurons to cause clinical manifestations of Alzheimer’s or Parkinson’s dementia. Indeed, a recent population-based prospective cohort study showed that serum C-reactive protein and pro-inflammatory cytokine levels are increased prior to the clinical onset of dementia.92 These interactions suggest that systemic infections, or indeed any challenge promoting a systemic inflammatory response, may contribute to the progression of chronic neurodegenerative disease and provide a potential link between early periodontitis-induced bacteremia/endotoxemia and subsequent neuronal injury.

Memory can be impacted by insulin activity. Insulin resistance is associated with age-related memory impairment and Alzheimer’s disease.93 Thus, the previously described periodontitis-induced insulin resistance may contribute to pathologic mechanisms underlying neurodegeneration, as might the described links between periodontitis and vascular disease. Increasing evidence indicates that several pathogenic mechanisms promoting atherosclerosis also function in neurodegenerative diseases.94 Vascular disease and Alzheimer’s disease share some biological mechanisms and risk factors, such as lipid metabolism dysregulation and systemic inflammation. Although the evidence for such a relationship is preliminary, atherosclerosis may be another important mechanistic link between periodontitis and neurodegeneration affecting the elderly.

Periodontal Disease and Respiratory Diseases

Periodontal disease may be connected more directly to respiratory disease. Although some studies of chronic obstructive pulmonary disease describe significant associations with periodontal disease and propose systemic mechanisms relating to inflammation and/or physiologic linkages, this data requires further support.95-98 A stronger case has been made that bacterial components of den-
oral plaque are a major cause of respiratory infections in older adults, especially those in institutions. Up to 48% of infections seen in nursing homes result from aspiration pneumonia, and the cost to treat patients developing pneumonia in these institutions has increased dramatically. Aspiration pneumonia is a significant cause of morbidity, hospitalization, and mortality in the nursing home population.

When host defense mechanisms are compromised because of disease, aging, poor nutrition, or other conditions associated with elderly patients in nursing homes, the aspiration of a large pathogenic inoculum from periodontally involved teeth overwhelms normal flora and significantly increases the risk of respiratory infection. Bacteria constitute approximately 70% to 80% of solid plaque material and 1 mm³ of plaque contains more than 106 bacteria of 300 different aerobic and anaerobic species. Aspiration of plaque bacteria by older patients often leads to lower respiratory tract infections, such as aspiration pneumonia or pneumonitis, and recent evidence links anaerobic bacteria from periodontopathic biofilms with aspiration pneumonia in elderly persons. Thus, poor periodontal health and accumulation of dental plaque is a major contributory factor in respiratory infections. Furthermore, addressing periodontal health in nursing home patients is critical not only because older adults are now more likely to retain their teeth but because younger persons are being admitted to such facilities.

Effect of Aging on the Periodontal-Systemic Connection

Age may also predispose individuals to the periodontal-systemic connection. It is well known that the incidence of periodontitis and the severity of untreated periodontal disease increase with age. Secretion of pro-inflammatory cytokines from monocytes/macrophages and levels of soluble TNF-α receptor normally increase with age. Thus, further increases in serum cytokines induced by periodontitis would not only be cumulative but could create a more destructive scenario through enhanced receptor interactions. Serum lipid levels also increase with age, particularly LDL. Similar to the pro-inflammatory cytokines, periodontitis-induced LDL/TRG elevation could be more damaging in this context and further increase pathological lipid levels.

Aging is associated with increased insulin resistance. Likewise, the incidence and severity of diabetes also increases with age. These conditions may result from loss of an individual’s capacity to respond to environmental challenges. Some investigators attribute this association to an imbalance of important intracellular divalent cations such as calcium and magnesium that make cells vulnerable to ionic disturbances. Many other systemic diseases/conditions associated with chronic inflammation also demonstrate increased incidence and severity with

Fig. 1: Linkage between periodontitis and systemic diseases/conditions predominantly affecting the elderly

- **Periodontitis**
 - Aspiration
 - Bacteremia
 - Endotoxemia
 - Rheumatoid factor
 - Vascular endothelium

- **Elevated Serum Pro-Inflammatory Cytokines**
 - Microglia activation
 - Synovial inflammation
 - Insulin resistance

- **Respiratory Infection**
 - Microglia activation

- **Dementia**
 - Atherosclerosis
 - Altered Lipid Metabolism

- **Hyperlipidemia**
 - Atherosclerosis
 - Cardiovascular/Cerebrovascular Disease

- **Diabetes**
 - ß-Cell destruction
 - Insulin resistance

- **Respiratory Infection**
 - Aspiration
 - Bacteremia
 - Endotoxemia
 - Rheumatoid factor
 - Vascular endothelium
advancing age.117,118 The specific mechanisms by which advanced age promotes chronic inflammation are not yet understood. Nonetheless, age-related increases in pro-inflammatory cytokine/cytokine receptor expression and oxidative stress, along with decreased bioavailability of free radical scavenging systems, likely exacerbate the systemic inflammatory state in the elderly and promote development of chronic inflammatory diseases.118,119

Thus, with advancing age, factors mediating the periodontal-systemic connection are positioned to act synergistically, putting even healthy patients at risk to develop periodontitis. An overview of the link between periodontitis and systemic diseases/conditions predominantly affecting the elderly is shown in Figure 1 (previous page). Of perhaps greater significance relative to morbidity/mortality, elderly patients with chronic periodontitis also may be at risk for developing any systemic disease or condition associated with elevated pro-inflammatory cytokines/serum lipids. Future clinical studies are required to validate this premise.

Masticatory Function and Nutrition in Older Adults

Although recent discussions of the periodontal-systemic connection have focused on systemic diseases/conditions, there is significant evidence associating dietary imbalance with systemic illnesses. Oral health significantly influences dietary intake, particularly aspects of oral health related to masticatory function and edentulism.122-129

Mastication is the first step in digestion and is absolutely essential to optimize dietary intake. Masticatory function in older individuals is influenced by two variables: the number and health of natural teeth and the functional status of dental prostheses. Older people tend to have fewer natural teeth and there are higher rates of edentulism with increasing age. That pattern is, however, changing with a projected reduction in edentulism over the next 20 years.2,3 Nevertheless, many older people rely on dentures for oral function, and even those who are dentate may require either partial dentures or a full denture in one jaw opposed by some natural teeth. Masticatory function in this group is often not much better than that seen in individuals who rely on full dentures.124,127 Additionally, over 25% of those aged 65-74 have severe periodontal disease likely accompanied by varying levels of pain or dysfunction.4 Compromised masticatory function causes variation in food choice to foods that an individual with impaired chewing can tolerate.122-127 Thus, poor oral health, especially poor periodontal health and edentulism, may negatively impact systemic health by disturbing nutritional intake.

Tooth loss is correlated with changes in diet that may contribute to increased risk of developing chronic diseases.12 Losing natural teeth and/or pain associated with oral infection impairs masticatory function.124 This outcome is particularly relevant to people residing in institutional settings where mastication may not be monitored. Furthermore, the use of dental prostheses may not always restore full masticatory function, resulting in significant dietary changes through altered food choices or food preparation methods.122 Indeed, denture wearers are often not aware of gradual adjustments made in food choice. As masticatory efficiency declines, people report increasing difficulty chewing foods and may choose not to eat foods difficult to chew, such as beef or steak, raw vegetables, or dry solid food like crusty bread. People handicapped by their dentition consequently suffer impaired intake of fruits, vegetables, and some key nutrients. Decreased intake of total calories, proteins, non-starch polysaccharides (dietary fiber) and vitamins is often accompanied by increased consumption of sugars and fats. These dietary links are supported by evidence by several large cross-sectional and longitudinal studies in Europe and the US linking oral health status to biochemical analyte levels of key micronutrients.130 These studies (the National Diet and Nutrition Surveys in the UK and the National Health and Nutrition Examination Surveys in the US) cited significant reductions in some micronutrients (vitamin C, retinol, folate and ß carotene) in edentulous subjects compared with those with natural teeth. The outcomes were independent of effects of age, gender, regional variation within a country and socioeconomic group.

The negative impact of masticatory dysfunction is likely compounded by food preparation. Fresh foods can be over-prepared (by removing skin from fruits and vegetables) or over-cooked by or for a person with reduced chewing efficiency and nutrients are consequently lost. Those nutrients might prevent or antagonize disease and facilitate cellular defenses and combat aging (anti-oxidant vitamins C and E).131,132 Reduction in dietary fiber (non-starch polysaccharides or dietary fiber) and vitamins is often accompanied by increased consumption of sugars and fats. These dietary links are supported by evidence by several large cross-sectional and longitudinal studies in Europe and the US linking oral health status to biochemical analyte levels of key micronutrients.130 These studies (the National Diet and Nutrition Surveys in the UK and the National Health and Nutrition Examination Surveys in the US) cited significant reductions in some micronutrients (vitamin C, retinol, folate and ß carotene) in edentulous subjects compared with those with natural teeth. The outcomes were independent of effects of age, gender, regional variation within a country and socioeconomic group.
Recent studies confirm a direct relationship between compromised masticatory function and malnutrition in both community-dwelling and institutionalized older adults.125-129 Elderly people with persistent untreated periodontal disease and/or dysfunctional prostheses had lower Healthy Eating Index (HEI) scores and significantly lower intake of vitamins A and B6.125 Poor nutritional status demonstrated by the Mini Nutritional Assessment (MNA) and a questionnaire on eating problems was significantly associated with periodontal problems, edentulism, and dysfunctional prostheses.126 These findings emphasize the importance of tools such as the MNA or HEI to assess nutrition along with dental evaluation for oral problems in a comprehensive care plan. Poorly fitting prostheses or chronic periodontitis as well as the potential for associated lesions and pain are of concern for individuals suffering from dementia or conditions that prevent them from articulating the cause for difficulty in chewing food.140-141 Often, institutionalized elderly patients undergo rapid weight loss after being fitted for new dentures that are not monitored for comfort and functional efficiency.141,142 Most often, poorly fitting dentures can be confirmed through the presence of lesions at the borders of the prostheses such as tissue overgrowth (epulis fissuratum) or ulcerations (denture ulcers).

Restoration of masticatory function by dental intervention alone will not necessarily lead to improved nutritional intake. Dental services should always be complemented by nutritional counsel, as has been confirmed in a recent clinical study where impaired chewing ability caused avoidance of hard and fibrous foods including fruits, vegetables and whole grains leading to a very low intake of non-starch polysaccharides and micronutrients.123 In this case, provision of prostheses did not improve the diet. However, individualized dietary advice provided at the time of denture insertion resulted in increased consumption of fruits and vegetables and improved intake of non-starch polysaccharides. It is important to note that an individual’s ability to respond to nutritional advice will be moderated by their oral health status. For example, an edentulous patient who has had a stroke resulting in paresis of the facial musculature will have considerable difficulty chewing foods because their ability to stabilize a complete denture during function will be impaired. The dental professional will need to work with the comprehensive care team to encourage a diverse and healthy dietary pattern. This could be accomplished in part while the patient receives instructions for use of complete dentures by challenging the patient to explore new foods and chewing methods. Dietary support and advice should always be given to patients being converted to edentulism for the first time, since using complete dentures as a masticatory tool is a challenge that will often be met by the blender unless positive support and advice is forthcoming from the dental team. It is widely recognized that a significant proportion of elderly people admitted to hospitals suffer from nutritional deficiencies and that adequate nutrient intake is an important determinant of recovery from illness.144-147 Specific plans for nutritional support may be required for edentulous subjects during such recovery, and professional dental help may be required to help such patients cope with poorly fitting dentures.

Two case studies shown below, (Figures 2 and 3), provide strong support for the importance of maintaining oral and periodontal health in aging patients.

Case 1

Relevant Medical and Social History:
- 80-year-old male, suffered a severe stroke affecting the right side of his body resulting in dense right-sided hemiparesis of the arm and leg with facial paresis and impaired speech (he is able to swallow)
- History of hypertension with arrhythmia and adult onset (type II) diabetes mellitus
- Approximately 6 months after the stroke, hypertension and diabetes worsened and are now difficult to control
- Smokes 20 cigarettes per day and imbibes the equivalent of 20 alcoholic drinks each week
- Fiercely independent widower living alone with pets
- Children live 150 miles away and cannot provide consistent monitoring and care

Relevant Dental History:
- Has not seen a dentist for over 20 years
Iacopino. Maintaining oral health in the aging population ...

• Had no complaints prior to the stroke but grandchildren commented about his missing front teeth
• Reports being able to chew all varieties of food prior to his stroke, but his daughter reveals that his diet is limited in terms of variety since the stroke and that he often cooks his food very thoroughly to facilitate chewing

Clinical Findings/Problems:
• Functional contacts between only 2 pairs of natural teeth (he can no longer manipulate a food bolus with his tongue so that it can be chewed by these contacts)
• Poor oral hygiene as a consequence of the hemiparesis
• Mandibular cervical caries, severe wear and pulpal exposure of maxillary molars
• Collapsed vertical dimension of occlusion
• Has never worn a prosthesis
• Altered neuromuscular control and coordination as a consequence of the stroke

Treatment Considerations:
• Severely compromised masticatory function from dental neglect and stroke
• Had been able to function prior to the stroke because he could manipulate foods between his remaining tooth contacts
• Since the stroke, has no control over a food bolus because of loss of tongue function and has changed his diet and modified food preparation to facilitate chewing
• Recent exacerbation of existing systemic disease may be because of nutritional imbalances caused by changes in diet and food preparation
• Without masticatory rehabilitation, he can no longer function independently

Treatment Options:
• Provide basic periodontal care, restore mandibular carious lesions, perform endodontics and restorations for maxillary molars, modify diet to processed food combinations that are nutritionally balanced; the latter would require supervision by caregivers or personal care workers
• In addition to dental services listed, provide dentures to increase functional contacts and maximize masticatory efficiency (a significant challenge for this patient to learn to tolerate and use) along with nutritional counseling

Treatment Provided:
• Phase I periodontal therapy
• Restoration of mandibular cervical caries using a glass ionomer
• Single visit endodontics for maxillary molars
• Restoration of maxillary molars using composite resin
• Acrylic maxillary partial denture using zest anchors and increasing the vertical dimension
• Personalized oral hygiene plan for this patient including use of a daily fluoride mouth rinse and application of fluoride varnish to the overdenture abutment on a weekly basis
• Nutritional counseling in consultation with family physician and children for occasional monitoring and reinforcement

Follow-Up:
This treatment approach gave this patient a reasonably stable upper denture that improved his appearance and masticatory function. In most cases, use of maxillary zest anchors would not have been contemplated given his poor oral hygiene; however, it was more important to ensure adequate retention for the removable partial denture. The oral hygiene program was successful in maintaining the zest anchors. This patient adjusted to the denture and was compliant with nutritional advice. His systemic health significantly improved within six months of denture insertion. This patient survived another 10 years before dying from a second stroke.

Case 2

Relevant Medical and Social History:
• 82-year-old widow, living in a nursing home for the past six years
• Prior to admission, history of RA since age 60 with little change in condition
• Approximately six months after admission, she began to experience states of confusion and, after two years, a primary diagnosis of Alzheimer’s-type dementia was recorded (currently being treated with amitryptiline)
• During the past three years, she has suffered from repeated occurrences of lobar pneumonia that did not
respond well to antimicrobial therapy and were slow to resolve
- During the past two years, there has been significant progression of the arthritis with marked deformity of the right wrist and fingers
- During the past year, has had significant weight loss of unknown origin

Relevant Dental History:
- Had seen her general dentist regularly for many years but had not had any dental examination or dental care since entering the nursing home (the facility did not have an oral healthcare policy and most residents were edentulous with the exception of this patient)
- Previous dental records indicated that she had 20 natural teeth remaining when she was last seen by her general dentist; half of her teeth had been restored but the periodontal condition was good and there was no evidence of active caries
- Had not brushed her teeth since the day of her admission to the nursing home and the facility staff were not aware she had her own teeth rather than dentures
- After six years in residence, she was referred for a dental consult by one of the visiting medical staff who was concerned that “she might have a problem with her teeth”

Clinical Findings/Problems:
- Facility had a free access kitchen area providing drinks and readily available snacks, such as bread and jelly
- This patient had a habit of getting cups of tea/coffee for other residents throughout the day and making a drink for herself each time using 2 teaspoons of sugar (estimated frequency of sugar intake was 16-18 sugar-laden drinks per day); the cariogenic effect of the sugar was compounded by the xerostomic effects of amitryptiline
- Rampant cervical caries involving all teeth in maxillary and mandibular arches (the mandibular central and lateral incisors were amputated below the crown)
- Poor oral hygiene and severe generalized periodontal disease

Treatment Considerations:
- Progression of dementia and arthritis along with frequent pneumonia appear temporally related to cessation of oral hygiene and development of rampant caries/periodontal disease
- Weight loss may be related to oral pain and discomfort and/or decreased masticatory function associated with decline of oral health and subsequent nutritional imbalance
- Treatment may need to be limited as a consequence of the extent of her oral disease, caries risk, and ability to tolerate dental procedures

Treatment Options:
- Removal of all remaining teeth and provision of immediate dentures
- Removal of grossly carious roots followed by transitional partial dentures planning for a phased movement to total edentulousness over the next 12-18 months
- Rigorous prevention program to overcome problems with xerostomia/caries and the addition of a partial denture (includes regular use of fluoride rinse, education of facility caregivers in appropriate oral hygiene techniques and the use of a mechanical brush)

Treatment Provided:
- Mandibular lateral and central incisor roots were extracted
- Phase I periodontal therapy
- Carious lesions were restored using chemo-mechanical caries removal with Aldara® followed by restoration using glass ionomer cement
- Nutritional counseling for facility caregivers
- Prevention program consisted of regular use of a fluoride rinse and education of facility caregivers in appropriate oral hygiene techniques including use of an automated toothbrush

Follow-Up:
This patient lived an additional 6 years. During that time, her remaining teeth were caries free and she did not develop any additional pneumonias. Her dementia and arthritis did not progress further. Her eating habits improved and she regained her normal weight.

Conclusions
A periodontal-systemic connection, although not fully understood on a molecular level, is relevant to the aging population and supported by ample literature. Evidence for such a connection is sufficient to base patient management approaches on paradigms including comprehensive transdisciplinary care. This is especially important for older patients susceptible to exacerbation of systemic diseases or to development of co-morbid conditions if periodontal health is not maintained. In the future, comprehensive care models must integrate dental and medical professionals with other health professionals to manage periodontitis and systemic disease. Dental professionals should appreciate the periodontal-systemic connection and stress the importance of regular periodontal maintenance to patients and other health professionals. Finally, insurers and policy makers must be convinced that investing in preventive periodontal management will pay huge dividends as the population ages with regard to reducing potential systemic complications, such as chronic inflammatory diseases/conditions.

1 Carisolv®, 3M, St. Paul, MN
The relationship between periodontitis, systemic disease, and the systemic inflammatory state as defined by serum pro-inflammatory cytokine and lipid levels not only offers intriguing therapeutic possibilities but suggests that notions of adequate preventive patient management need revision. Lipid-lowering therapies or dietary interventions used to treat periodontitis in older patients may also counteract chronic inflammatory systemic diseases linked to periodontitis. Recent clinical studies have established a positive correlation between high LDL/TRG levels and periodontitis. In fact, recent data demonstrate that high-fat diets and/or diets rich in omega-6 fatty acids produce a systemic inflammatory state associated with development of periodontitis. Low fat diets, lipid-lowering drugs, and diets rich in omega-3 fatty acids appear to have the opposite effect and may be useful in preventive approaches or in patients with refractory periodontitis.

There are significant interactions between oral health and nutrition. In the presence of dysfunctional dentition and/or oral disease, dietary alterations likely occur resulting in nutritional imbalance. Such deficiencies could exacerbate systemic disease and result in increased systemic illness. Appropriate care strategies to cope with this issue are not yet fully defined, but simple nutrient supplementation is unlikely to be effective without nutritional counseling from a comprehensive care team. Thus, elderly patients should be evaluated for masticatory function, and rapid weight loss without apparent systemic cause should trigger an oral assessment or a dental referral.

References

Even as an adult, all of your bones keep changing. They’re either building and maintaining their strength or becoming weak and porous. Weight-bearing exercise is critical. By staying in shape, you can help prevent bone loss.

Visit aaos.org or call 1-800-824-BONES for more about staying healthy and strong, right down to your bones.

By contributing $125 a month to your workplace retirement plan, you can accumulate $100,000 in 30 years with just a 5.0% annual return. Workplace savings plans are the easiest way to a comfortable retirement.

Enroll in your company’s plan today. To learn more about saving at work or to become an American Saver, call the US Department of Labor at 1-866-444-EBSA (3272), or contact America Saves at Work at www.americasaves.org/dol

Build Wealth at Work
Mentors are instrumental in teaching us to see who we can be and inspire us to reach our full potential. Philips Oral Healthcare and RDH Magazine recognize exceptional dental hygienists with the prestigious Sonicare Mentor of the Year Award.

Distinguished past winners include:
Jane Weiner, 2005, Kristen Simmons, 2006, and Anne Guignon, 2004

For details, how to easily submit your story and to learn about the exceptional prizes for submissions and winners visit: www.rdhmag.com/mentor
1. By the year 2030, what percentage of Americans will be 65 years of age or older?
 - 10%
 - 20%
 - 30%
 - 40%

2. Elevated serum lipid levels alter immune cell function which, in turn, results in up-regulation of proinflammatory cytokines from monocytes and down-regulation of _______ from macrophages.
 - Interleukin-1 (IL-1)
 - Interleukin-6 (IL-6)
 - Tumor Necrosis Factor-alpha (TNF-α)
 - Growth factors

3. It has been suggested that a proinflammatory imbalance created by excess IL-1β and TNF-α is one of the most critical determinants of pancreatic _____ loss in diabetes.
 - Alpha cell
 - Beta cell
 - Delta cell
 - Enterochromaffin cell

4. Periodontitis-induced elevations of IL-1β/TNF-α and subsequent elevations of serum lipid levels may play a significant role in development of all of the following systemic diseases in the elderly EXCEPT:
 - Dementia
 - Rheumatoid arthritis
 - Cardiovascular disease
 - Cerebrovascular disease
 - Chronic obstructive pulmonary disease

5. Brain cells that function to protect the nervous system by acting as debris scavengers, killers of microbial pathogens, and regulators of immune responses are ________.
 - Purkinje cells
 - Microglia cells
 - Fibrillary astrocytes
 - Oligodendroglia cells
6. A recent population-based prospective cohort study has reported that proinflammatory cytokine levels and ____ are elevated prior to the clinical onset of dementia:

- Amyloid A
- Amyloid B
- Haptoglobin
- C-reactive protein

7. Aspiration pneumonia or pneumonitis in the elderly has recently been linked to _____ from periodontopathic biofilms.

- Viruses (e.g., Herpes type VII virus)
- Aerobic bacteria
- Anaerobic bacteria
- Yeast (e.g., Candida albicans)

8. In regards to elderly persons, as age increases, all of the following occur EXCEPT:

- Insulin resistance increases
- Severity of diabetes increases
- Bioavailability of free radical scavenging systems decreases
- Proinflammatory cytokine levels and receptor expression decrease

9. What estimated percentage of the population between the ages of 65 and 74 years has severe periodontal disease?

- 5%
- 15%
- 25%
- 35%

10. Recent data demonstrate that high-fat diets and/or diets rich in omega-6 fatty acids produce a systemic inflammatory state and are associated with development of _____.

- Vasculitis
- Reduced formation of new collagen
- Acute nephritis
- Chronic pancreatitis

Questions are based on a manuscript by Anthony M. Iacopino, DMD, PhD, entitled “Maintaining Oral Health in the Aging Population: The Importance of the Periodontal-System Connection in the Elderly.”

Dear Grand Rounds Readers:

Addendum regarding ADA CERP accreditation: The self-study continuing education course articles published in the February and May 2006 issues of Grand Rounds in Oral-Systemic Medicine™ contained an oversight of PennWell. The continuing education offered in these two issues were co-presented with Dental Economics® and RDH®, however, Dental Economics and RDH were not acknowledged as the co-presenters in the continuing education test or the letters of course completion. Consequently, the ADA CERP logo was inappropriately utilized in conjunction with these articles. The correct verbiage should have stated “Dental Economics/RDH is an ADA CERP Recognized Provider”. On behalf of Grand Rounds, Dental Economics, and RDH, PennWell will issue amended letters of completion to readers who participated in the continuing education studies published in the February and May 2006 issues of Grand Rounds. We apologize for any inconvenience this may have caused our readers.
The multi-dimensional concept of Health-Related Quality of Life (HRQL) has been widely used to describe certain domains of physical and psychosocial functioning, as well as perceptions of health and opportunity. These domains have been used to quantify an elderly person's experiences, beliefs, expectations and perception of quality of life. Similarly, Oral Health-Related Quality of Life (OHRQL) is a concept that was introduced in 1998 by a group of dental hygiene faculty members who sought to define a model of care that emphasized the multidimensional nature of oral problems. The concept of OHRQL was designed to help dental hygienists better plan and assess dental hygiene care with respect to an individual's perceptions of and reactions to their own oral health status, as modified by impairments, functional states, perceptions, and social opportunities. There currently exists sufficient evidence of oral-systemic relationships such that meaningful distinctions between HRQL and OHRQL cannot be rendered. In fact, considering these concepts in isolation contributes to the historical schism between medicine and dentistry. In short, oral health-related issues can no longer be viewed as separate from those relating to somatic health because oral diseases and conditions seriously compromise the quality of life of older people. A new model of care focusing on comprehensive chronic disease management for the elderly must be developed in order to advance quality of life for this population.

Abstract
The size of the older population will likely double over the next 30 years, while the number of elderly individuals living in nursing homes (NHs) may triple. Many of these individuals are part of the “baby boomer” generation and are dentate, having benefited from water and dentifrice fluoridation. However, evidence suggests that many individuals in NHs will have periodontal disease that is undiagnosed or untreated, placing them at greater risk for systemic sequelae related to inflammation from oral disease. A “silent epidemic” characterized by inadequate health care for the elderly population suggests the need for a new model of care focusing on comprehensive chronic disease management to advance the quality of life for this group. This article reviews chronic disease trends in the aging population with emphasis on oral health. Barriers to promoting oral health in NH settings and the impact on quality of life are discussed. A model of care utilizing transdisciplinary collaboration between nursing and dental hygiene healthcare professionals is proposed to achieve a best practice approach to meeting oral health needs of nursing home residents.

(A complimentary copy of this article may be downloaded at www.thesystemiclink.com.)

Key Words: Health-related quality of life, oral health-related quality of life, minimum data set, transdisciplinary collaboration, access to care
As tragic statistics on NH care are reported, we cannot pretend that the care many elderly persons receive in NHs meets minimal standards. Coupled with mounting evidence to support oral-systemic relationships and the fact that oral health is an essential component of an elderly person’s physical and social well-being, we must begin a dialogue on the significance of oral health as a determinant of HRQL in NH residents. Furthermore, rather than resigning ourselves to the belief that suffering from multifactorial chronic disease states is a natural progression of age and nonmodifiable, we must advocate for a model of successful aging for geriatric dentistry in the 21st century. Research suggests that prevention or treatment of periodontal disease diminishes the overall inflammatory burden systemically and therefore should be part of a best practice approach to disease management for older adults.

Indeed, the time is now to look for sustainable models of NH care that can fulfill the following criteria:

1) Improve NH residents’ access to progressive management of interrelated chronic disease states, such as periodontal disease, diabetes, atherosclerosis-induced conditions, pulmonary diseases, insulin resistance, rheumatoid arthritis, osteoporosis, and even neurodegenerative diseases like Alzheimer’s and Parkinson’s.
2) Promote sustainable clinical outcomes leading to oral and systemic health.
3) Provide intervention strategies that are economically viable.
4) Provide satisfying professional experiences for persons providing care in NHs.

In this article we propose a model of care that fulfills the above criteria by relying on transdisciplinary collaboration between professional nurses and dental hygienists to achieve oral health and HRQL for NH residents. In support of this new model, we present background information providing a rationale for proposed changes. Although this discussion focuses more on periodontal disease as it relates to increasing the risk for systemic sequelae in the elderly, it must be noted that other oral conditions such as caries, xerostomia, impaired mastication from dysfunctional occlusion, burning mouth syndrome, and candidiasis infection, among others, also impact the overall health of the elderly.

The Aging Population and Chronic Disease Trends
The size of the older population will likely double over the next 30 years. By 2030, almost 1 in 5 Americans — 72 million — will be 65 years or older. The age group 85 and older (the “oldest old”) is now the fastest growing segment of the US population. This group is projected to double from 4.7 million in 2003 to 9.6 million in 2030, and double again to 20.9 million by 2050. As a group, this population has experienced greater longevity, but they have an increased likelihood of experiencing lasting damage resulting from chronic inflammatory diseases or conditions. The most common chronic conditions among elderly NH residents are cerebrovascular disease and cardiovascular disease (CVD) (e.g., hypertension, stroke), cognitive and musculoskeletal disorders (e.g., arthritis), and endocrine disorders (e.g., diabetes). The added burden of periodontal disease likely increases risk of systemic inflammation and exacerbates already existing chronic diseases in the elderly. As an example, approximately 1 in 5 skilled nursing facility residents over 55 have diabetes in addition to other multiple, chronic co-morbidities.

This condition is accompanied by increased risk of periodontal disease and associated infection and increased risk for diabetic complications. If healthcare providers in NHs can begin to view periodontal disease as a risk factor for chronic inflammatory systemic conditions and initiate appropriate treatment, this outcome may have a positive impact on co-existing chronic diseases in at-risk residents.

The Profile of a Typical NH Resident
In 1997, 1.6 million elderly lived in NHs, and this number is expected to triple over the next 30 years. Most NH residents need assistance with at least 3 activities of daily living: bathing and showering, including oral care; dressing; and eating. Most also suffer significant sensory, visual and orthopedic impairments, and rely on Medicaid as their primary source of payment. At least 50-80% of NH residents have some form of dementia. Because of water and dentifrice fluoridation, the large “baby boomer” population will comprise the first cohort group composed of elderly individuals who are dentate. Epidemiologic trends in chronic inflammatory periodontal disease indicate that 44% to 81% of adults 55 years and older have some level of periodontal disease, most of which is undiagnosed. Consequently, it is reasonable to predict that most individuals entering NHs will have undiagnosed and untreated periodontal disease. These new residents may be at greater risk for systemic sequelae related to inflammation of oral origin, including increasing risk for atherosclerosis-induced diseases, aspiration pneumonia, and complications of diabetes and rheumatoid arthritis.

The burden of oral disease in elderly individuals is well documented. In a comprehensive review of oral health studies of institutionalized elderly published between 1970 and 1989, Berkey and colleagues describe the compromised oral health status of NH elderly. Most had unmet oral needs, including high rates of edentulism, dental caries, poor oral hygiene, periodontal disease, and soft tissue lesions. Similarly, poor oral hygiene was reported for...
most NH residents with natural teeth in a study of 1,063 residents residing in 31 different NHs. In a recent observational study of oral care in US NHs, 81% of the resident sample had poor oral hygiene. Furthermore, using data from the 1995 US National Nursing Home Survey, Gift and colleagues reported that only 15% of the residents could be described as having excellent or very good oral health. With declining rates of edentulism and the cumulative effects of chronic, disabling illnesses, the likelihood of risk for dental and periodontal disease is extended into a time characterized by increasing self-care deficits. Thus daily oral hygiene, early diagnosis of oral diseases and conditions, definitive treatment, and professionally rendered maintenance procedures are required for elderly NH residents to enjoy normal oral function and to achieve optimal oral health.

Fig. 1: Impact of oral health status on Health-Related Quality of Life outcomes

Physical domain
- Periodontal infection initiates local inflammatory response
- Gram-negative bacteria gain access to vasculature: transient bacteremia occurs
- Pathologic bacteria seed the vasculature and travel to distant sites within the body
- Metastatic inflammation caused by the immunologic response to periodontal pathogens and their toxins
- Increased risk for systemic disease/condition or exacerbation of coexisting chronic disease
- Premature death

Psychosocial domain
- Poor oral health
- Self conscious of oral health status
- Less social interaction
- Lower morale
- Increased stress
- Depression
- Lower levels of life satisfaction
- Premature death

Oral-Systemic Health Considerations of the Elderly

Common systemic diseases in the elderly population have important oral sequelae and can detract from successful aging. For example, diabetes increases susceptibility to periodontal disease, which progresses more rapidly in diabetic individuals than in nondiabetic subjects and worsens the diabetic state. Controlling periodontal infection increases glycemic control and enables better management of diabetes. In addition to increased susceptibility to periodontal disease, other oral complications of diabetes include angular cheilitis, candidiasis, glossitis, tooth mobility and caries. The potential for these complications in NH residents has important consequences for disease management by health professionals. Neurological diseases (e.g., Alzheimer’s disease or stroke) impair motor, sensory and cognitive function in a way that can increase the risk of developing gingivitis, periodontitis and dental caries.
Conversely, recent literature indicates that periodontal disease may actually be linked to development of Alzheimer’s disease (see Stein, Scheff & Dawson on pages 14-24).

Partial or complete loss of teeth likely complicates medical conditions by affecting diet selection and the ability to chew, swallow, and enjoy food, with resulting adverse impact on nutritional status.28-29 Most elderly NH residents receive an average of 7 routine prescription medications per day and 2.7 additional medications on an “as needed” basis to control chronic conditions.30-31 Many of these drugs have side effects (e.g., xerostomia, gingival hyperplasia, lichenoid reactions) that adversely affect oral tissue.32

Older people are also susceptible to infections caused by periodontal pathogens, which have been known to translocate to tissues distant from the oral cavity. Empirical evidence consistently indicates that conditions of poor oral hygiene, dental plaque accumulation, and impaired host defenses provide conditions favorable for proliferation and aspiration of oral pathogens that cause nursing home-acquired pneumonia.33-36 At its 2003 consensus development conference, the American Academy of Periodontology concluded that “patients and healthcare providers should be informed that periodontal intervention may prevent the onset or progression of atherosclerosis-induced diseases”.37

Similarly, several studies show that individuals with poor oral hygiene and periodontal disease are more likely to develop CVD than individuals without periodontal infection.38 and one study suggests that the risk of fatal heart disease doubles for persons with severe periodontal disease.39 There is compelling evidence that tooth loss is a marker of past periodontal disease, and that periodontal disease may actually accelerate the development of atherosclerosis-induced diseases, such as heart disease and stroke.40,41 These findings suggest that oral infections, specifically periodontal pathogens, contribute to the incidence of CVD. Thus, many older adults may be at increased risk for myocardial infarctions or strokes because of undiagnosed and asymptomatic atherosclerosis potentially accelerated by chronic periodontal infections. By treating periodontal disease, the development of vascular diseases may be prevented or controlled, thereby decreasing risk for myocardial infarction and stroke. Similarly, preventive interventions, particularly improvements in oral hygiene, could lower the risk of aspiration pneumonia in older adults.42-44

Oral Health and Quality of Life

Oral and pharyngeal problems accompanied by oral-facial pain, infections, edentulousness, and tooth loss negatively impact an older adult’s quality of life.29 Clearly, partial or complete edentulism has negative esthetic and functional (speech, chewing/eating, swallowing, and nutritional) consequences, and the emotional impact of total tooth loss can be profound.45 The literature shows that for individuals with dementia, the pain of dental etiology is under-detected and under-treated by health professionals.46 Furthermore, tooth and mouth problems can affect facial appearance and the ability to eat, communicate, and interact socially. While important at all ages, these activities have an especially vital connection for older NH residents who are at risk for malnutrition, are experiencing a shrinking social world and are increasingly susceptible to infection.29,39 Thus, good oral health for older adults means eliminating pain and discomfort and maintaining function so that quality of life can be optimized.

Barriers to Preserving Oral Health in Nursing Homes

Despite its importance, a low priority is placed on oral health in a NH setting. Several factors contribute to this situation and to oral health disparities experienced by the vulnerable elderly population, who rely on caregivers for at least part of their oral hygiene care.

Self-Care Deficits and Lack of Capacity

Oral health care is complicated by functional and behavioral factors associated with increased frailty. Self-care deficits related to sensation (e.g., vision), cognition (e.g., dementia), mobility (e.g., manual dexterity and range of motion), and endurance and motivation are endemic among the NH elderly. Both positioning and gaining adequate access to the mouth and encountering complex dentitions, such as fixed or removable prostheses or missing, chipped or rotated teeth, present enormous challenges for certified nursing assistants (CNAs) responsible for daily oral care. These professionals often have insufficient knowledge, skill, time or appreciation of the importance of oral health.48,49 In addition, competing tasks and priorities influence the degree and quality of oral care provided.50

Cognitive and behavioral problems are common among NH residents, and care-resistive or disruptive behaviors during personal care are reported by nursing staff to be the most difficult aspect of providing care.51 CNAs report that attempts to assist with oral care are often met with hostile and uncooperative behaviors, such as residents refusing to open their mouth, biting on toothbrushes, and hitting.47-50 Oral care can be an unpleasant experience for both the CNA and resident, and administering procedures that invoke fear or meets resistance may discourage CNAs from providing adequate care. The quality of care and care interactions during mouth care provided by CNAs has been recently described.15 Findings indicate that most residents who need assistance do not receive...
oral care. Residents are commonly resistive when oral care is provided, but behaviors seem to be related to how care is provided. Common approaches by CNAs administering oral hygiene care included wearing unclean gloves, inserting implements into the mouth without telling residents first, positioning residents supine or in other non-functional positions, and resorting to physical restraints. Time spent brushing teeth by CNAs assisting residents was observed to be an average of 16.2 seconds (range 10-22 seconds), which is inconsistent with clinical practice standards. For most residents, basic supplies (toothbrush, toothpaste, mouthwash or toothette) were lacking. Thus, direct-care providers need practical strategies and ongoing organizational support to provide oral care in a humane and efficacious manner.

Knowledge and Perceptions of Nursing Home Staff
CNAs have limited formal knowledge or training in oral health care.49 Similarly, only one-half hour of professional nursing curricula is devoted to geriatric oral health.54 As a result, recognizing oral problems such as lesions or oral sequelae of chronic systemic conditions, appreciating the effects of medications on oral tissue,55 and planning appropriate care is often overlooked.51 Few registered nurses are confident in their ability to recognize signs of periodontal disease or lesions that might require referral for treatment.52,53 Mouth care practices in nursing have remained relatively unchanged over the past 120 years.57 Negative perceptions held by CNAs (who are responsible for most daily oral care) regarding mouth care are numerous, including expressions of fear and disgust, and descriptors including burdensome, unrewarding, problematic, unpleasant, repulsive and trivial.48,58-62 Furthermore, few physicians caring for NH residents view oral health as important,63 and the accuracy of physicians’ oral assessments has been reported to be unacceptably low, with a high incidence of inappropriate treatment and referral decisions.64 Lack of staff, supervision and limited accountability also influence how well the oral care needs of residents in NHs will be met. Oral care is a care activity identified by CNAs as easily eliminated when staffing problems occur,65 and NHs are rarely sanctioned for failing to provide such care.

Limitations of Current Regulatory Policy
There is evidence that oral health assessment and treatment needs of elderly residents are only partially met by currently mandated regulatory formulas in NHs. Federal regulations require that all long-term care facilities with Medicare and Medicaid reimbursement complete a comprehensive health assessment for each resident (known as the Minimum Data Set [MDS 2.0]), which includes oral health. Registered nurses are required to complete sections K and L of the MDS, which are comprised of only two queries pertaining directly to oral health. The goal is to indicate oral health problems and “triggers” requiring intervention and plan for care. Recent studies, however, suggest that use of the MDS to detect oral health concerns is limited, since nurses identify few oral health or hygiene problems via the MDS.66-68 Moreover, when the problems are identified, rarely does dental treatment occur. Consequently, the MDS, as currently structured for the oral health component, does not provide regulatory support for good clinical practice. The American Dental Association and Special Care Dentistry have asserted that the oral/dental content of the MDS reflects an incomplete appraisal of the oral health of individuals when used by NH staff, and recently recommended a revised version.69 Although this recent recommendation is a step in the right direction relative to providing a more complete oral assessment, these authors recommend an additional revision which focuses on comprehensive periodontal evaluation.

Limitations in Financial Policy
Few NH residents can pay for dental care. On average, 67% of NH residents have their overall health care paid for through the Medicaid program, while 9% are covered by other payers or Medicare and 24% are covered by other payers or Medicare does not provide any dental benefits. Dental care under Medicaid is an optional benefit that varies state-by-state, and many states’ Medicaid programs do not provide dental coverage for adults. In states with adult dental benefits, dental services vital for NH elderly are frequently not covered, and 27 states have failed to meet even the most minimal standards of care.71 Thus, older adults must pay for dental care as an out-of-pocket expense,72 at a time when their oral health needs are perhaps the greatest.

State Medicaid programs reimburse dentists for basic services at rates significantly below customary fees, resulting in low levels of dental provider participation in the program. In addition to low reimbursement levels, dentists often refuse to care for NH residents because of lack of geriatric training, interest, or adequate treatment facilities.73 Recent research demonstrates that treatment of periodontal disease may decrease healthcare costs related to diabetes and CVD.74 Accordingly, there is some marginal movement within the private insurance industry to cover costs associated with nonsurgical periodontal treatment in recognition of the fact that providing coverage for this type of care may lower future costs of providing care for chronic conditions such as diabetes and CVD.75 If private insurers can demonstrate that treating periodontal disease equates to cost savings from future com-
Rationale for Moving to Transdisciplinary Collaboration

The current “unidisciplinary” approach to oral health care in NHs, wherein each individual performs his/her job within a formal scope of practice, is unsuccessful. Interventions improving delivery of oral care in NHs have met limited success. Prior approaches relied predominantly on oral health education programs (OHEPs) for CNAs. Historically, OHEP programs have been narrowly focused, usually containing content on the importance of oral health, oral diseases common among older adults, oral assessment and preventative oral care. Length of training varies from single, one hour sessions to sessions conducted over several weeks. The programs have produced some short-term gains in CNA knowledge and attitudes but show inconsistent evidence of health gain for the resident, and sustainability is problematic. A change in practice responsive to the needs of an aging population is now needed. Given the growth of the aging population, their dentate status, the impact of chronic medical conditions and treatments on oral health, and the suggested relationship of oral disease and general health, the “myth of the omnipotence of the independent practitioner” must be challenged, as evidence accumulates that collaboration works when health professionals function well as a team. However, before real collaboration can occur, healthcare providers must fully appreciate oral-systemic relationships. Specifically, members of the medical community must move beyond thinking of oral infection as pathology confined to the mouth without systemic consequence.

Interdisciplinary Collaboration Works: Impact on Patients and Clinicians

There are impressive outcomes from collaborative models of interdisciplinary care. Most of the focus on interdisciplinary collaborative care has been between a narrow range of health professionals, primarily nurses and physicians in hospital settings. Evidence indicates that the presence or absence of interdisciplinary collaborative care affects the work environment and quality of patient care. In an early study focusing on the impact of nurse-physician interaction on patient outcomes, Knaus and colleagues found that poor communication between physicians and nurses was associated with higher than expected death rates. Shortell and colleagues found that effective interprofessional caregiver interaction was associated with a shorter length of stay in the intensive care unit (ICU), lower nurse turnover, better quality of care, and greater ability to meet family member needs. Schmitt and colleagues reviewed 11 studies conducted on the effectiveness of geriatric interprofessional teams and found that team care was more effective for the outcomes examined, including mortality, functional status, hospital use (e.g., length of stay and readmission), referrals and cost. In a recent study conducted in three proprietary NHs, Krichbaum and colleagues showed that forming collaborative problem-solving teams between CNAs and advance practice nurses (APNs) improved the quality of care and resulted in significant improvement in resident outcomes, including decreased incidence of depression and incontinence.

Collaboration also results in greater personal and professional satisfaction and a healthier work environment. Studies demonstrate significant associations between physician-nurse collaboration and nurse satisfaction, self-esteem, and staff perceptions of uncoordinated, unsafe care. In short, there is ample evidence that collaborative practice is essential for good health care. Collaboration is a valuable “best practice” approach to improve the quality of oral health care in the NH setting.

Beyond Interdisciplinary Care: Moving to Transdisciplinary Collaboration

Nursing and dental hygiene do not share a tradition of collaborative practice. Their respective practices have not been integrated to any great degree, and both professions have worked in “splendid isolation”. But a potential for synergy between the two exists in the NH. First, in this setting, there is opportunity for interdisciplinary work in healthcare teams that have informal clinical and administrative structure. Second, as noted, there is an unmet need to promote oral health and prevent disease in a growing elderly population with multiple chronic diseases. Nurses must become advocates for good oral health and hygienists need to become more aware of disease management affecting oral health. Third, members of both professions share common goals in terms of scope of practice, conceptual approach to practice, and professional competencies. Nursing’s scope of practice focuses on the patient and family and consists of providing direct care, coordinating care, and collaborating with other health professionals; both prevention and treatment of disease are encompassed in this practice. The practices of both nurses and dental hygienists are guided by standards by their respective professional organizations, and those standards delineate a well-accepted systematic approach to care, which includes assessment, diagnosis and planning, implementation and evaluation, with scope of practice for dental hygiene focusing on oral health promotion and disease prevention, facilitating self-care, treatment, and collaboration. A recent analysis revealed major areas of overlap between dental core competencies and nurse practitioner competencies. The authors contend that movement to a transdisciplinary perspective is vital to implement oral-systemic medicine
Coleman, Hein, and Gurenlian. The promise of transdisciplinary nurse-dental hygienist collaboration ...

... because incorporation of this science into medical and nursing practice has been slow to evolve and limited to the "tooth level". Moreover, we must apply this model because of the historic failure to value oral health at both institutional and regulatory levels, a failure reflected by failure to nurture good clinical practice and establish regulatory oversight. A transdisciplinary model utilizes the disciplinary perspectives and the expertise of nurses, dental hygienists, and other members of the healthcare team. In such a practice model, members collaborate, build consensus, and institute regular and open communication across discipline boundaries in order to provide integrated services. One distinction between an interdisciplinary and transdisciplinary approach is that in the latter, members of different disciplines are responsible for educating one another on the significance of a clinical problem or treatment. Thus, practice becomes a synthesis of knowledge and practice. Each contributor maintains the integrity of self, but the learning and plan of care is "owned" by all. There is no turf, because the goal of quality care transcends it. This framework will provide a foundation for a best practice approach to the delivery of excellent geriatric oral health care.

The single instance in the literature of transdisciplinary collaboration between nursing and dental hygienists was reported by Pelligrini and colleagues and related to joint care of patients admitted to an ICU. Traditionally, the ICU has not been an arena for maintenance of oral health or a place where dental hygienists work with nurses. In fact, the clinical relevance of the observations and the hygienists’ unique perspective to patient management were incidental to the planned study, although the nature of the collaboration was critical to staff and patient outcomes. Pelligrini and colleagues described a joint project in which nurses working with dental hygienists learned to conduct oral health assessments for mechanically ventilated ICU patients. Nurses were trained by hygienists to assess the oral status of ICU patients (including components such as dental plaque, inflammation, salivary flow, bleeding, caries, and candidiasis), and the dental hygienist was able to envision a unique role, bringing clinical expertise to research and clinical practice. This study showed that transcollaborative interactions with dental hygienists improve nurses’ knowledge and abilities related to oral care.

Unleashing the Potential of Nurse-Dental Hygienist Transdisciplinary Care within Nursing Home Facilities

A transdisciplinary collaborative care management model is shown in Figure 2. This model provides a collaborative practice arrangement between Nurse Practitioners (NPs) and Advanced Dental Hygiene Practitioners (ADHPs), a professional role that is currently being developed by the American Dental Hygienists’ Association. The ADHP has garnered federal support with legislation signed by the President that includes language encouraging the Health Resources and Services Administration (HRSA) to explore creation of the ADHP to improve access to oral health care services.

The model is grounded conceptually in commonalities between both professions in the scope of and approach to practice (i.e., assessment, diagnosis, planning, implementation and evaluation). The model sees NPs and ADHPs with geriatric expertise as collaborators in revising the MDS to 1) provide a more comprehensive evaluation, 2) conduct joint screening and diagnostic procedures, and 3) develop care plans addressing short- and long-term care needs, taking into consideration pharmacologic, nutritional, neurologic and physiologic co-factors with oral health needs.

The salient features of the model include integrated evaluation and transdisciplinary interventions. Residents admitted to a NH would be assessed by both NPs and ADHPs. Based on history and physical examination findings, diagnoses would be generated consistent with each professional’s scope of practice. The goal of collaboration at this juncture would be to evaluate the necessity and risk of therapeutic intervention, including the nature and severity of co-morbidities, the cognitive/emotional state of the resident, advance directives, and invasiveness of proposed treatment. Individualized prevention and treatment care plans would be co-developed utilizing each profession’s expertise. Three broad-based joint treatment plans are envisioned: a chronic disease management plan, an episodic care plan and a palliative care plan. A chronic disease management plan is consistent with the level of chronic disease burden of NH residents, and would be suited for most residents. Some frail individuals may not be appropriate for this level of intervention and would be more suited to a palliative plan of care. Consistent with real-world practice, residents could “cycle” from one care plan to the next, so the model must remain dynamic and not be rigidly applied. Similarly, residents may develop acute conditions requiring appropriate triage to a medical or dental provider for definitive treatment, returning to their baseline treatment trajectory. Interventions requiring transdisciplinary care would include education and support of staff responsible for daily oral care, consultation regarding behavioral problems that interfere with routine care, performance of periodic screenings to measure residents’ oral health needs, coordination of dental services with area dentists, development of policy to comply with regulatory requirements, and monitoring of clinical outcomes.

In addition, the NP and ADHP could collaborate on grantsmanship opportunities to secure funding to restructure the NH setting so that on-site oral health care is viable. For ex-
Coleman, Hein, and Gurenlian. The promise of transdisciplinary nurse-dental hygienist collaboration ...

Fig. 2: Transdisciplinary process of nurse-dental hygienist collaboration in nursing home settings

Assessment phase

- New resident intake evaluation utilizing revised MDS
 - Comprehensive history, physical & psychosocial assessment (performed by nurse practitioner)
 - Comprehensive oral assessment (performed by advanced dental hygiene practitioner)

Diagnosis phase

- Collaborative problem synthesis & co-diagnosis

Planning phase

- Joint Care Plan

Implementation phase

- Palliative Care Plan
 - Frail residents with multiple co-morbid conditions or in final stages of terminal diseases who cannot physically withstand extensive or intensive treatment of chronic conditions, including periodontal disease.

- Chronic Disease Management Plan
 - Residents with chronic inflammatory diseases/conditions that may respond to progressive intervention strategies directed at decreasing the inflammatory burden, subsequently preventing the escalation of chronic diseases or decreasing the risk for complications.

- Episodic Care Plan
 - Residents with acute conditions to be remedied immediately & short term, initial therapies directed at preventing the escalation of lesions, injuries, other pathologies, pain management and eradication of acute infection.

Evaluation phase

- Palliative care
 - Ongoing observation/support of physical & emotional problems that require soothing/calming and pain management; oral gross debridement & prophylaxis performed in an on-site operatory, as an alternative to periodontal procedures which resident may not be able to physically withstand; or daily bedside care directed at thorough debridement for a resident confined to bed; both types of care rendered by dental hygienist.

- Episodic care
 - Triage to appropriate medical or dental care provider, e.g., immediate referral to dental care providers of a resident who presents with oral abscesses of endodontic & periodontal origin; pain management (pharmacological and non-pharmacological); maintenance procedures directed at sustaining stable outcomes in order to determine appropriate long-term care plan.

- Chronic disease management
 - Progressive disease management strategies such as non-surgical treatment of periodontal disease utilizing adjunctive therapies as needed, programs directed at weight management; proper nutrition; progressive maintenance procedures; re-treatment when necessary; referral as appropriate.

Examples of interventions that require transdisciplinary care

- Was there proper consent for care; proper infection control; sensitivity to resident & family; proper documentation of care; thoroughness; to what degree did the intervention provide relief; level of pain/discomfort acceptable to resident?

- Was there proper consent for care; proper infection control; sensitivity to resident & family; proper documentation of care; triage to appropriate healthcare provider on timely basis; pain management acceptable; follow-up of acute conditions; outcomes tracked to ensure stability; appropriate long-term care plan developed on a timely basis?

- Was there proper consent for care; proper infection control; sensitivity to resident & family; proper documentation of care; were interrelated chronic diseases/conditions that may amplify each other identified; do treatment plans address multifactorial risk; were resident and family members educated about the importance of treating the oral cavity; were clinical outcomes tracked to monitor disease activity and/or need to reinstitute more aggressive care?
ample, an oral health center providing a dental operatory within the NH could be established enabling visiting dentists to provide therapeutic care to clients. Educational experiences could be coordinated among local dental, dental hygiene, dental assisting and nursing schools so that students are provided greater experiences in geriatric centers. Further, registered dental hygienists (RDHs) could be hired as staff members of NH facilities to provide routine oral health care to the residents and administer preventative and therapeutic dental hygiene care as established in the care plans. RDHs would be ideal for this role as they have the skills and knowledge both to provide these services and oversee CNAs in providing daily oral health care to residents. It is conceivable that one RDH could be assigned to 50 beds, ensuring that clients receive oral health care twice daily. RDHs would be supervised by ADHPs.

In addition, this model provides opportunities for research to evaluate its merits. Research questions to be addressed might include: To what extent has access to collaborative care management been improved using the transdisciplinary model for NH residents? Has the transdisciplinary model improved the quality of life for NH residents and, if so, how? Has the oral health of NH residents changed using the transdisciplinary model of practice? Has the nutrition status and diet of NH residents changed since the transdisciplinary model of practice has been implemented? To what extent has insurance coverage for oral health care changed since the transdisciplinary model has been implemented in NH settings? How has the transdisciplinary model affected the professional status and prestige of nurses and dental hygienists?

Conclusion

Can HRQL, promoted through comprehensive chronic disease management addressing oral health as a key component, become a real world standard? Some would argue that given the size of the aging population and the competition for shrinking resources for the delivery of geriatric care, this model of care is a “pie in the sky” notion best reserved for ivory tower discussions. However, with the flood of baby boomers entering nursing homes, public opinion may begin to favor implementation of comprehensive chronic disease management strategies for the elderly. Nowhere could this model of care provide greater relief than in the 18,000 nursing homes across the US. Because of their profound dependency, elderly residents in a NH setting constitute a special population requiring the attention and consideration of society and governmental policymakers.

References

Helping Patients Understand the Importance of Maintaining Oral Health Throughout the Aging Process

One of the greatest risks of the aging process is that dental health is compromised. As aging takes its toll, teeth and gums may become more susceptible to disease and infections. This can lead to the onset of periodontal disease, a condition that involves inflammation and destruction of the tissue that supports teeth. Periodontal disease can cause teeth to loosen and eventually fall out.

As people age, they may become more vulnerable to conditions such as mouth sores, tooth decay, and oral infections. This can lead to the need for more frequent dental checkups and treatments. It is important to understand how oral health is affected by age and how this can impact overall health.

To download a file of this patient education information, go to: www.thesystemiclink.com
IMPLEMENTATION

To assist dentists in developing collaborative relationships with the medical community, Grand Rounds in Oral-Systemic Medicine™ has provided templates for dentists working in collaboration with physicians of at-risk patients.

This letter may be customized for individual patients by editing the fields (which appear in red typeface) as they relate to the unique risk profile and periodontal treatment plan of a specific patient.

[Template content]

A Microsoft Word document of this template may be downloaded at: www.thesystemiclink.com
For the FIRST TIME, NOW AVAILABLE!
RDH Magazine Delivered to Your Inbox!

Receive your copy of RDH magazine digitally starting in August 2006.

To receive your digital copy, subscribe online at www.subscribe-rdhmag.com

Ad Sales

East:
Chris Page
(518) 373-0622

Key Accounts:
Craig Dickson
(630) 690-2472

Southeast:
David Hurlbrink
(717) 244-3148

Midwest/West:
Amy Frazin, RDH
(773) 745-0202

Midwest/South:
Marvin R. Ashworth
(918) 832-9266

Advertisers Index

Advertiser Page
Beutlich Pharmaceuticals LP 3
Colgate-Palmolive Company C2
DENTSPLY Pharmaceutical 11-12
Diamond Age Systems 31
Florida Probe ... 15
Laclede Professional Products 33
OMNII Oral Pharmaceuticals C3-C4
OraPharma, Inc .. 4-6
Sunstar Butler ... 9
INDICATION: Peri Ox Oral Rinse is indicated for use between dental visits as a part of a professional program for the treatment of gingivitis caused by plaque and to reduce gingival bleeding. It is also indicated for use by patients with gingivitis, or gingivitis resulting from plaque deposits on the teeth. Peri Ox Oral Rinse is not intended for use in situations where soft tissue problems, such as ulceration or erosion, prevent the use of a toothbrush.

CONTRAINDICATIONS:
- Indicated in the presence of bleeding or ulceration of the oral mucous membranes. Use of Peri Ox Oral Rinse should be avoided in these situations.
- Discontinue use if patients experience any unusual reactions to the rinse.

DESCRIPTION: Peri Ox Oral Rinse is a 0.12% solution of chlorhexidine gluconate, 1:1 (w/v) of chlorhexidine gluconate and 1:1 (w/v) of nonionic surfactant in a base consisting of water, 1.2% alcohol, glycerin, PEG-60 sorbitan sesquioleate, flavor, sodium saccharin, and FD&C Blue No. 1. Peri Ox is a self-dispensing unit (SPDU) type rinse. Peri Ox is a salt of chlorhexidine gluconate and chlorogenic acid. Its chemical structure is:

CLINICAL PHARMACOLOGY: Peri Ox Oral Rinse provides substantial activity during oral rinsing. The clinical significance of not all patients with gingivitis has been substantiated by clinical trials. Microbiological sampling of plaque has shown a significant reduction of certain aerobic bacteria, both non-sporo- and sporoform, through the use of Peri Ox Oral Rinse. The study used Peri Ox Oral Rinse in a six-month clinical study did not show any significant changes in bacterial resistance, overgrowth of potentially pathogens, or other adverse changes in the oral microbial ecosystem. Treatment for Peri Ox Oral Rinse for six months did not result in the development of microorganisms resistant to chlorhexidine gluconate.

HOW SUPPLIED: Peri Ox Oral Rinse is supplied as a blue liquid in:
- 16 fl. oz. (473 ml) NDC 51264-02-22
- 8 fl. oz. (237 ml) NDC 51264-01-22
- 4 fl. oz. (118 ml) NDC 51264-00-22
- 0.5 fl. oz. (15 ml) NDC 51264-00-20
- 0.5 fl. oz. (15 ml) NDC 51264-00-20

DIRECTIONS FOR USE: Swish 15 ml (1 oz) of rinse for 30 seconds, then spit out. Use after brushing and before bedtime. Use, as prescribed, NOTE: To minimize medication errors, do not time use. Use the rinse immediately after brushing.

WHAT TO EXPECT WHEN USING PERI OX ORAL RINSE:
- Peri Ox Oral Rinse is prescribed to treat gingivitis, to reduce the number of fast-growing bacteria, and to help control the spread of plaque.

HOW SUPPLIED:
- 16 fl. oz. (473 ml) NDC 51264-02-22
- 8 fl. oz. (237 ml) NDC 51264-01-22
- 4 fl. oz. (118 ml) NDC 51264-00-22
- 0.5 fl. oz. (15 ml) NDC 51264-00-20
- 0.5 fl. oz. (15 ml) NDC 51264-00-20

DIRECTIONS FOR USE: Swish 15 ml (1 oz) of rinse for 30 seconds, then spit out. Use after brushing and before bedtime. Use, as prescribed, NOTE: To minimize medication errors, do not time use. Use the rinse immediately after brushing.

WHAT TO EXPECT WHEN USING PERI OX ORAL RINSE:
- Peri Ox Oral Rinse is prescribed to treat gingivitis, to reduce the number of fast-growing bacteria, and to help control the spread of plaque.

HOW SUPPLIED:
- 16 fl. oz. (473 ml) NDC 51264-02-22
- 8 fl. oz. (237 ml) NDC 51264-01-22
- 4 fl. oz. (118 ml) NDC 51264-00-22
- 0.5 fl. oz. (15 ml) NDC 51264-00-20
- 0.5 fl. oz. (15 ml) NDC 51264-00-20

DIRECTIONS FOR USE: Swish 15 ml (1 oz) of rinse for 30 seconds, then spit out. Use after brushing and before bedtime. Use, as prescribed, NOTE: To minimize medication errors, do not time use. Use the rinse immediately after brushing.

WHAT TO EXPECT WHEN USING PERI OX ORAL RINSE:
- Peri Ox Oral Rinse is prescribed to treat gingivitis, to reduce the number of fast-growing bacteria, and to help control the spread of plaque.

HOW SUPPLIED:
- 16 fl. oz. (473 ml) NDC 51264-02-22
- 8 fl. oz. (237 ml) NDC 51264-01-22
- 4 fl. oz. (118 ml) NDC 51264-00-22
- 0.5 fl. oz. (15 ml) NDC 51264-00-20
- 0.5 fl. oz. (15 ml) NDC 51264-00-20

DIRECTIONS FOR USE: Swish 15 ml (1 oz) of rinse for 30 seconds, then spit out. Use after brushing and before bedtime. Use, as prescribed, NOTE: To minimize medication errors, do not time use. Use the rinse immediately after brushing.

WHAT TO EXPECT WHEN USING PERI OX ORAL RINSE:
- Peri Ox Oral Rinse is prescribed to treat gingivitis, to reduce the number of fast-growing bacteria, and to help control the spread of plaque.

HOW SUPPLIED:
- 16 fl. oz. (473 ml) NDC 51264-02-22
- 8 fl. oz. (237 ml) NDC 51264-01-22
- 4 fl. oz. (118 ml) NDC 51264-00-22
- 0.5 fl. oz. (15 ml) NDC 51264-00-20
- 0.5 fl. oz. (15 ml) NDC 51264-00-20

DIRECTIONS FOR USE: Swish 15 ml (1 oz) of rinse for 30 seconds, then spit out. Use after brushing and before bedtime. Use, as prescribed, NOTE: To minimize medication errors, do not time use. Use the rinse immediately after brushing.
Fear Of Flossing?

Gingival bleeding? Make sure patients know it’s not the floss.

If patients are afraid to floss because their gums bleed, first let them know that it’s not the floss that is causing the problem and that daily flossing actually helps improve gum health. Then start the patient on PERIDEX® chlorhexidine gluconate 0.12% therapy, the oral rinse indicated for the treatment of gingivitis as characterized by redness and swelling of the gingivae, including gingival bleeding on probing. That’s a claim you will not hear from the makers of OTC mouthwashes.

For more information, contact your OMNII Preventive Care Consultant or visit our website www.omniipharma.com

PERIDEX is indicated for use between dental visits as part of a professional program for the treatment of gingivitis. Patients with a known sensitivity to Chlorhexidine Gluconate should not use PERIDEX. The effect of PERIDEX on periodontitis has not been determined. Common side effects associated with the use of PERIDEX include an increase in the staining of oral surfaces, an increase in calculus formation, and an alteration in taste perception. Please see adjacent page for full prescribing information.

Call to order: 800-445-3386

©OMNII 2006. PERIDEX is a registered trademark of Zila Pharmaceuticals, Inc.